EFFECTS OF CONTAMINATED HEAVY METAL INDUSTRIAL SLUDGE WASTE ON GERMINATION AND SEEDLING GROWTH OF SOLANUM MELONGENA L

1SRINIVAS J., 2PURUSHOTHAM A.V., 3MURALI KRISHNA K.V.S.G.

1Department of Civil Engineering, JNTU Kakinada, -533 003, Andhra Pradesh, INDIA
2MSN Degree College, Kakinada-533016, Andhra Pradesh, INDIA
3Department of Civil Engineering, JNTU Kakinada, -533 003, Andhra Pradesh, INDIA
E-mail: 1srinivas.msc18@gmail.com, 2dravp59@yahoo.com, 3kvsg.muralikrishna@gmail.com

Abstract: The present study deals with the “Effects of Contaminated Heavy metal Industrial sludge waste on germination and seedling growth of Solanum melongena L.” (Brinjal) plant Species were investigated in laboratory by conducting a general Petridish test and growth inhibition assessment. Brinjal Species of plants i.e., Solanum melongena L. were used in order to investigate plant’s ability to germinate and survive in a gradient of contaminated solid waste with heavy metals like Copper (Cu), Zinc (Zn), Iron (Fe) and Manganese (Mn) were found in the Industrial sludge. The results indicate that effect of ISW on Germination time and viability of germination seeds also found. Compared to the Control WE1; 82.02(%), WE2; 66.02(%), WE3; 61.09(%) and WE4; 52.81(%) of total germination effected and decreased.

Keywords: Germination, Heavy Metal, Industrial Sludge Waste, Seedling Growth, Solanum Melongena L.

I. INTRODUCTION

The Industrial sludge especially those in hazardous waste sites are contaminated with heavy metal e.g. Copper, Zinc, Iron and Manganese. Industrial and agricultural activities have contributed to the increasing occurrence of heavy metals in the ecosystem (Vinit-Dunand et al., 2002). In fact, metals are a natural part of terrestrial systems, occurring in soil, rock, air, water, and organisms (Reichmann, 2002). Generally, metal toxicity issues do not arise in natural soils with their native vegetation. Even if the soil is naturally high in a particular metal, native plants will often have become adapted over time to the locally elevated levels (Brooks et al., 1992; Ozounidou et al., 1994).

Heavy metals such as manganese (Mn), copper (Cu), iron (Fe), zinc (Zn) and nickel (Ni) are essential mineral nutrients for higher plants. Cu is a component of several electron transport enzymes and is involved in catalyzing the redox reactions in mitochondria and chloroplasts (Marschner, 1995). However, Cu also induces toxicity in tissue concentrations slightly above its optimal levels (Fernandes & Henriques, 1991). Excess Cu in soil results not only from its increasing use industry, like mining and smelting, but also from its use as a pesticide (e.g., the Bordeaux mixture), and its presence in sewage sludge amendments (El-Nennah et al., 1982; Vinit-Dunand et al., 2002).

Zinc toxicity in plants limited the growth of both root and shoot (Malik et al., 2011). Zinc is one of the micronutrients essential for normal growth and development of plants as it is known to be required in several metabolic process (Nazar khan., 2013). Iron toxicity in tobacco, canola, soybean and Hydrilla verticillata are accompanied with reduction of plant photosynthesis and yield and the increase in oxidative stress and ascorbate peroxidise activity (Sinha et al., 1997). Mn is readily transported from root to shoot through the transpiration stream, but not readily remobilized through phloem to other organs after reaching the leaves (Loneragan., 1988). Necrotic brown spotting on leaves, petioles and stems is a common symptom of Mn toxicity (Wu., 1994).

Solanum melongena L., is a member of the Solanaceae family, grown extensively in central, southern, and Southeast Asia, and in a number of African countries (Kalloo, 1993). Metals can also be transported from soil into groundwater resulting in to ground water contamination and inhibiting growth of plants (Sharma et al., 2008).

The aim of present study was to investigate the the effects of Industrial sludge waste to Seed Germination on Solanum Melongena L. Plant Seeds in Kakinada, E.G. District, Andhra Pradesh, India.

II. STUDY AREA

The Kakinada city is the capital of East Godavari District of Andhra Pradesh on the central east coast of India. The present study deals with the “Effects of contaminated heavy metal industrial sludge on germination and seedling growth of Solanum melongena L. Kakinada is situated between the latitude 16˚57’ North and longitude 82˚15’ East. The study was carried out at the Solanum Melongena L. Seed species were taken from an Agricultural Cooperative Centre at Kakinada, Andhra Pradesh area of East Godavari District.
Effects Of Contaminated Heavy Metal Industrial Sludge Waste On Germination And Seedling Growth Of Solanum Melongena L.

III. MATERIAL AND METHODS

3.1 Industrial sludge waste: The Industrial sludge waste samples were collected at the outlet of release channel of the “Oil and Gas Industry” at Kakinada; air-dried and was brought to the laboratory. The dried material was powdered in a mortar.

3.2 Seed Material: The seeds of (Brinjal) Solanum melongena L. variety: were procured from an Agricultural Cooperative Centre at Kakinada, East Godavari district, Andhra Pradesh.

3.3 Preparation of Solid Waste Extract: The Solid waste was powdered and 1kg solid waste was mixed with one liter of double distilled water and stirred continuously. Stirring and sedimentation continued for 20 days after which, the supernatant liquid was taken for experimental study. The water extract of the solid waste was analysed for various physico-chemical parameters.

3.4 Laboratory Experiments: The seeds Solanum melongena L. were cultured in petridishes, using graded concentrations (5%, 10%, 30% and 50% V/V of ISW) of water extract of ISW corresponding to soil amendments.

3.5 Germination experiments: For each experiment, 25 seeds of Solanum were taken in sterilized petridishes (15×20 cms) at equal distance. These were treated with equal doses of different concentrations (V/V) of water extract of the solid waste (5%, 10%, 30% and 50%) as and when necessary. Seeds treated with distilled water were maintained as control. Four replicates were maintained for each treatment including the control. The petridishes were kept under diffused light at room temperature (28 ± 1°C). Emergence of radical having at least 5mm length was taken as indicative of germination. The Percentage germination was recorded as per the method specified by Carley and Watson (1968). Each Experiment was repeated thrice with six replicates per treatment of 20 seeds on each Occasion. The data were statistically analyzed for LSD at 95% confidence limits (Pause and Sukhatma, 1967).

IV. RESULTS AND DISCUSSION

The Copper, Zinc, Fe and Iron were found 20.89, 16.50, 9.84 and 0.310. Comparatively control WE1 to WE4 of pH, Colour, Odour, Electrical conductivity, Available Nitrogen, Available Phosphorus, Exchangeable Potassium, Copper, Zinc, Iron and Manganese levels are increased. (Table – I and Fig-2).

![Location Map of Kakinada](image)

Figure – 1: Location Map of Kakinada

Table 1: Physico-chemical characteristics of Control & Water Extracts

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameters</th>
<th>Control Water Extracts</th>
<th>WE1</th>
<th>WE2</th>
<th>WE3</th>
<th>WE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pH</td>
<td>6.82</td>
<td>5.82</td>
<td>5.82</td>
<td>5.68</td>
<td>5.53</td>
</tr>
<tr>
<td>2</td>
<td>Electrical conductivity (Millimho)</td>
<td>0.812</td>
<td>0.880</td>
<td>0.892</td>
<td>1.078</td>
<td>1.23</td>
</tr>
<tr>
<td>3</td>
<td>Copper (%)</td>
<td>0.6</td>
<td>3.8</td>
<td>4.8</td>
<td>7.10</td>
<td>9.86</td>
</tr>
<tr>
<td>4</td>
<td>Zinc (%)</td>
<td>14.5</td>
<td>15.9</td>
<td>16.09</td>
<td>17.82</td>
<td>18.90</td>
</tr>
<tr>
<td>5</td>
<td>Iron (%)</td>
<td>1.0</td>
<td>2.12</td>
<td>3.61</td>
<td>3.24</td>
<td>3.86</td>
</tr>
<tr>
<td>6</td>
<td>Manganese (%)</td>
<td>0.21</td>
<td>0.8</td>
<td>0.10</td>
<td>1.30</td>
<td>1.36</td>
</tr>
</tbody>
</table>

![Heavy Metal Concentrations in ISW](image)

Fig-2: Heavy Metal Concentrations in ISW
Effects Of Contaminated Heavy Metal Industrial Sludge Waste On Germination And Seedling Growth Of Solanum Melongena L.

Fig 3: Effects of Industrial Sludge Waste Water Extract On Germination Time

![Effects of ISW Water Extract on Germination Time](image1)

Figure 4: Effect of water extracts of ISW on Seed Viability

![Effects of Water Extracts of ISW on Seed Viability](image2)

Table 2: Effect of water extracts of ISW on Germination time and viability of Germinating seeds

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>% of Unviable seeds</th>
<th>% of Total Germination</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>83%</td>
<td>17%</td>
<td></td>
<td></td>
<td>2</td>
<td>84.61</td>
</tr>
<tr>
<td>WE1</td>
<td>78%</td>
<td>15%</td>
<td>4%</td>
<td></td>
<td>7</td>
<td>82.02</td>
</tr>
<tr>
<td>WE2</td>
<td>53%</td>
<td>24%</td>
<td>7%</td>
<td></td>
<td>20</td>
<td>66.02</td>
</tr>
<tr>
<td>WE3</td>
<td>6%</td>
<td>41%</td>
<td>14%</td>
<td>4%</td>
<td>33</td>
<td>61.09</td>
</tr>
<tr>
<td>WE4</td>
<td>4%</td>
<td>26%</td>
<td>15%</td>
<td>4%</td>
<td>42</td>
<td>52.81</td>
</tr>
</tbody>
</table>

Figure 5: Petridish Culture of *Solanum melongena* L. seeds

Figure 6: Petridishes with Seedling of *Solanum melongena* L.
The germination of time and viability of germination of seeds found. The results indicate that effect of ISW on Germination time and viability of germination seeds also found. Compared to the Control WE1 82.02 (%), WE2 66.02 (%), WE3 61.09 (%) and WE4 52.81 (%) % of total germination also effected and decreased.

CONCLUSION

The water extract of the ISW (1 kg of ISW leached into 1 l of water) had relatively lower concentrations of different elemental constituents and had a pH almost similar to that of the ISW while the Electrical Conductivity has increased slightly. The pH of the WE of the present study was significantly low in acidity. Owing to the high levels of Cu, Zn, Iron and Manganese in the WE of the present study, with every precipitation, the ISW can potentially enhance the Copper, Zinc, Iron and Manganese concentrations in the soils of vicinity. Compared to the Control WE1 82.02(%), WE2 66.02(%), WE3 61.09% and WE4 52.81% % of total germination effected and decreased.

Therefore there is a need to implement certain rules that help in the reduction of metal level from a wide range of sources such as from the metal processing industries and oil and gas plants. Seeding growth is considered as an indicator of metal stress on plant vigor. Their increased concentrations in human food chain over a long time can provoke detectable damage to health.

ACKNOWLEDGEMENT

Authors are thankful to Dr. A.V. Purushotham Principal, MSN Degree College, Kakinada and Dr. K.V.S.G. Murali Krishna Professor, Department of Civil Engineering, JNTU Kakinada for encouragement and for providing necessary facilities.

REFERENCES

Effects Of Contaminated Heavy Metal Industrial Sludge Waste On Germination And Seedling Growth Of Solanum Melongena L.