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Abstract— Mathematical models of dynamics employing exterior calculus are mathematical representations of the same 
unifying principle; namely, the description of a dynamic system with a characteristic differential one-form on an odd-
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I. INTRODUCTION 

 
Mathematical models of dynamics employing 
exterior calculus are mathematical representations of 
a unifying principle; namely, the description of a 
dynamic system with a characteristic differential one-
form on an odd-dimensional differentiable manifold 
leads, by analysis with exterior calculus, to a set of 
differential equations and a characteristic tangent 
vector which define transformations of the system 
[1], [2]. The model is here applied to economic 
growth dynamics and Navier-Stokes dynamics; the 
outcomes cannot be obtained without exterior 
calculus.  
 
II. DYNAMICS ON DIFFERENTIAL ONE-
FORMS 
 
2. 1 Differential One-Forms 
At each point ofa n-dimensional differentiable 
manifold M with n local coordinates xk, 
(a) there exists a basis set of tangent vectors  
{xk} for an n-dimensional vector  space of tangent 
vectors  v  belonging to tangent space TMx, and (b) 
there exists a basis set of differential one-forms 
{dxk}for an  n-dimensional vector space of 
differential one-forms  df  on tangent space  TMx. 
The  tangent  bundle TM (= TMx) and cotangent 
bundle T*M (= T*Mx), where T*Mx is the dual of  
TMx, have the structure of a differential manifold of 
dimension  2n with local coordinates {xk, dxk(v)} and 
{xk, df (xk)}, respectively. Differential one-form 
dS on T*Mxis defined by the contraction dS ()= df 
(v) whereT (T*Mx); hence, 
 

dS = df (xk) dxk  (2.1) 
      
2.2 Dynamics 
For dynamic systems, a temporal coordinate x0 is 
introduced as an additional local coordinate for  M, 
TM and T*M, thereby changing TM and T*M into 
odd-dimensional manifolds. Hence, df(x0)dx0 is 
added to eqn.(2.1), where df (x0) is a function of 
all (2n +1) coordinates;df (x0) describes the phase 

flow on this extendedcotangent bundle. Using bkfor 
df(xk)   and dx0for  
df(x0)dx0, dS  becomes 
 
dS = bk dxk + (x0, …, xn ;b1,…, bn)dx0 (2.2)  
 
Variablebk (t) (compare to momentum in Hamiltonian 
mechanics) is conjugate to the “position” variable 
xk(t), since:  
(a) bk = bk (x0)  and  xk = xk (x0)  
(b)  =  (bk ,xk, x0) 

(c) bk= dS (xk) = contraction of dS  with tangent 
vector xk.   

The exterior derivative of dS (dS) gives the 
differential two-form d. 
d = dbkdxk+ [(xk) dxk +(bk) dbk 

+ (x0) dx0] dx0(2.3) 
   
where dS. If xk and bk  describe mappings of the 
temporal coordinate onto the direction of the system 
phase flow, then (a) xk = xk (x0), bk = bk (x0) and (b) the 
following contraction must hold at each point (bk , xk, 
x0) of the transformation: 

d (, ) = 0  (2.4) 
 

where    = (dbk/dx0)bk +      
(dxk/dx0)xk+ x0    (2.5) 

  
and  is an arbitrary vector. d is a mapping of a pair 
of vectors onto an oriented surface; if the contraction 
d (, ) = 0, then the mapping is defined only if the 
coordinates  dbk/dx0 and dxk/dx0 of   have the values 
 

dxk/dx0=  (bk) ; dbk/dx0= (xk)       (2.6) 
 
Substituting coordinate values from eqns.(2.6) into 
(2.5), vortex vector  R(R) is  
 
R = (xk) bk 

 (bk) xk  +  x0(2.7) 

 
From the foregoing discussion note that contraction 
of dS  with vortex vector (R), gives 
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dS(R) = bk (bk) + (2.8)   
where  dS(R)  is the Lagrangian on extended tangent 
space (xk, dxk/dx0, x0). Also, note that for eqn. (2.4) 
(where the exterior derivative of a characteristic 
differential one-form is contracted on a pair of 
tangent vectors and set equal to the unique scalar 
zero), the analysis refers to vortex tubes that do not 
end. For vortex tubes which end in an elementary 
volume,  d (, ) is set equal to a unique scalar 
other than zero. A previous application [2] of the 
present model to the source dependent Maxwell 
equations illustrates the difference in procedure 
required for such vortex tubes. 
 
III. ECONOMIC GROWTH DYNAMICS ON A 
DIFFERENTIAL ONE-FORM 
 
To construct mathematical models of complex 
economic systems, some economists employ 
Hamiltonian mechanics, thermodynamics and 
statistics [3]; recent thermodynamic developments 
use differential forms. In the present investigation, 
exterior calculus and its’ main tool (differential 
forms) are used to construct a mathematical model of 
economic growth dynamics. Using the growth 
function Y(Ki, Li, t), the differential one-form 
proposed for economic growth dynamics is 
 
dS= KidLiYdt(3.1) 

 
where S plays the role of the action in Hamiltonian 
mechanics, Y(Ki, Li, t) is the growth function (the 
Omega function, e.g., the Hamiltonian), Ki is the 
capital, Li is the labor, and t  is the time. Use of the 
proposed principle implies: 
 

 
 

IV. NAVIER-STOKES DYNAMICS ON A 
DIFFERENTIAL ONE-FORM 
 
4.1 Introduction 
In fluid dynamics, the Euler and Navier-Stokes 
equations (NSE) model the dynamics of a fluid in  
Rn(n = 2 or 3)for times t 0. 
For incompressible fluids the NSE are 

 
∂퐯
∂t = −(퐯 ∙ 훁) + 훁P + ν

∂
∂x

∂퐯
∂x + 퐟 	(4.1) 

 
	푑푖푣	퐯 = ퟎ																																												(4.2) 

 
	퐯(푥 , … ,푥 , 푡 ) = 퐯 (푥 , … ,푥 )			(4.3)  

    
For the case of zero viscosity ,  these equations are 
the Euler equations. Eqn.(4.3) is the initial condition 
at positionxk and time t, eqn.(4.2) is the divergence-
free condition and eqn. (4.1) is the equation  
describing the dynamics, with externally applied 
force  f(x1,…,xn,t), velocity v(x1,…xn,t), 
pressureP(x1,…,xn,t), and with forces due to pressure 
gradient P and viscous friction 휈∑ 휕 휕 퐯.Many 
studies focus on finding vsatisfying the first three 
equations or on proving or disproving the global 
existence, smoothness and breakdown of Navier-
Stokes solutions on  R3 or on  R3/Z3. A critical 
analysis of many analytic and numerical solutions to 
eqn. (4.1), led Fefferman[4] to doubt whether 
standard methods of solving these equations are 
adequate.  
The present investigation is different, namely, the 
dynamic Navier-Stokes equation is transformed into a 
differential one-form on an odd-dimensional 
differentiable manifold. It is then shown that the use 
of exterior calculus predicts a set of differential 
equations and tangent vector characteristic of 
Hamiltonian geometry [1, 2]. This pair of equations is 
solved for the position xk as a function of time and for 
the conjugate to the positionbk as a function of time. 
The solutionbk  is shown to be divergence-free by 
contracting the differential 3-form corresponding to 
the divergence of the gradient of the velocity with a 
triple of tangent vectors, implying constraints on two 
of the tangent vectors for the system. Analysis of 
solution bk shows it is bounded since it remains finite 
as| xk |∞, and is physically reasonable since the 
square of the gradient of the principal function is 
bounded.  
 
4.2 Differential One-Form 
Multiplying eqn. (4.1)  by  “-dt ”  gives 

dS = Bj dxk - dt (4.4) 
where 

Bj = (v/ xj ) ; Bjdxj= (v)v dt(4.4.1) 
 

훀 = 	−훁푃 + 	휈
휕퐁풋
휕푥 + 퐟 

dS = −(휕퐯/ ∂푡)푑푡(4.4.2) 
  
Where S is referred to as the principal function. To 
develop훀  as a function of (Bj, xj, t) and further 
characterize the equation for dS(xj, t), the quantity 
휕 퐁  in 훀    is analyzed in the following manner:  
first Taylor’s expansion of  Bj  is taken in the 
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neighborhood of initial position (Bj(0), 푥 , 푡 ), then 
휕 퐁  is taken, then 휕 퐁 (0) from Taylor’s 
expansion of  Bj is substituted into the expression for 
휕 퐁 , [(퐁 (ퟎ) = 퐁 (푥 , 푡 )] 
 

휕 퐁풋 =
퐁풋 − 퐁풋(ퟎ)−

(풕 − 풕ퟎ)흏풕퐁풋(ퟎ) 풙풋 − 풙ퟎ
풋 ퟏ

 

+ 	
푵 − 풓 − ퟏ
풓! (푵− 풓)! 풙풋 − 풙ퟎ

풋 푵 풓 ퟏ
푵

풓 ퟎ

∞

푵 ퟐ

 

X(풕 − 풕ퟎ)풓흏풙풋
푵 풓흏풕풓퐁풋(ퟎ)(4.5) 

 
Substituting this 휕 퐁   into  훀 gives  
 

훀 = −훁푃 + 퐟 

+	흂
퐁퐣 −퐁퐣(0)

−(푡 − 푡 )휕 퐁퐣(0)

풏

풋 ퟏ

푥 − 푥  

+흂
푵 − 풓− ퟏ
풓! (푵− 풓)!

푵

풓 ퟎ

∞

푵 ퟐ

풏

풋 ퟏ

푥 − 푥  

                    X  (푡 − 푡 )풓휕 휕 퐁퐣(0)(4.6) 
 The one-form corresponding to dS  is 
    

퐝퐒 = 퐁풋푑푥 − 훀푑푡(4.7) 
 
where boldface symbol “d” is the exterior derivative 
operator and  dS is the exterior derivative of vector 
field  S. It is noted that xjandBj  are a conjugate pair, 
according to the three conditions in sec.(2.2), and 
since 퐁 = 퐁 (푥 , 푡) = 퐁 (푥 (푡), 푡) = 퐛 (푡), then 
    

퐝퐒 = 퐛풋푑푥 −훀푑푡             (4.8) 
 
which is analogous to the expression for the 
differential one-form for the action in Hamiltonian 
mechanics. The geometric object dSis called a vector-
valued differential one-form on extended cotangent 
space T*Mx(coordinates (bj, xj, t)), with basic 
differential one-forms dbj, dxj, dt, and characteristic 
function  (bj, xj, t). With this development, the 
Navier-Stokes equation is expressed as a differential 
form useful for applying exterior calculus to solve 
this equation. 
When the technique for applying the proposed 
principle is utilized, sets of differential equations and 
a vortex vector is obtained. These results are 
summarized below: 

= 	 훀
퐛

;
퐛

= −	 훀         (4.9) 

Using the definition of   , with 퐛   replacing 퐁 the 
above equations become 
    

= 	   ,                (4.10) 
 
풅퐛
푑푡 = 휕 (훁푃)− 휕 퐟 

 

			−휈휕
퐛풋 − 퐁풋(0)

−(푡 − 푡 )휕 퐁풋(0) 푥 − 푥  

 

−휈휕
푁 − 푟 − 1
푟! (푁 − 2)!

∞

푥 − 푥  

X		(푡 − 푡 )풓휕 휕 퐁풋(0)(4.11) 

      
The solution to the equation for  푑푥 /푑푡  is 
 

푥 = 푥 	± 	 [2휈(푡 − 푡 )] / (4.12) 
 
To change the equation for  푑퐛 /푑푡  so that a series 
expansion method can be used for its solution, first  P 
and  fare approximated by a Taylor’s series to second 
order and P is taken, then partial derivatives  
휕 퐟		퐚퐧퐝		휕 푃 andare taken. When comparing the 
terms 
휕 휕 퐟(ퟎ)(푥 −
푥 )and휕 휕 퐟(0)(푥 − 푥 )with 
휕 퐟(0) (푥 − 푥 ) , all in 휕 퐟 , it is assumed 
휕 휕 퐟(ퟎ) ≪ 휕 퐟(0)   and  휕 휕 퐟(ퟎ) ≪
휕 퐟(0) ; these terms are excluded since a coordinate 
system can be supposed where the terms are zero or 
exceptionally small. Following the above indicated 
procedure and noting once again that 퐛 = 	 퐛 (푡), the 
differential equation for 푑퐛 /푑푡    becomes 
 
풅퐛
푑푡 = −

휈(푁 − 푟 − 1)
푟! (푁 − 푟)! 휕풙풌

풓휕 퐁풌(0)
푵

풓 ퟎ

∞

푵 ퟐ

 

 
X		(푥 − 푥 ) (푡 − 푡 )풓 

 
+ −휕 휕 퐟(0) (푡 − 푡 ) + −휕 퐟(0) (푥 − 푥 ) 

 
+ 퐞퐤휕 + 퐞풌 ퟏ휕 휕 + 퐞풌 ퟐ휕 휕 푃(0)

− 휕 퐟(0)  
 

+ 휈 퐛 − 퐁풌(0) (푥 − 푥 )  
 

+[−휈휕 퐁풌(0)](푥 − 푥 ) (푡 − 푡 )						(4.13) 
  

퐞  is a unit vector arising from the use of the 
gradient. Multiplying dbk/dt by  (푥 − 푥 )  and 
using 푥 = 푥 	± 	 [2휈(푡 − 푡 )] /   to remove 
the(푡 − 푡 ) dependence, 푑퐛 /푑푡  becomes  
 

(푥 − 푥 )
풅퐛
푑푡 = 휈 퐛 − 퐁풌(0)  

−
(푁 − 푟 − 1)

2(2휈) 푟! (푁 − 푟)!휕풙풌
풓휕 퐁풌(0)

푵

풓 ퟎ

∞

푵 ퟐ

 

X(푥 − 푥 )  
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+ −(2휈) 휕 휕 퐟(0) (푥 − 푥 )  
 

+ −휕 퐟(0) (푥 − 푥 )  
 

+

⎣
⎢
⎢
⎢
⎢
⎡ −

1
2휕 퐁풌

(0)− 흏풙풌퐟(0)

+
퐞퐤휕

+퐞풌 ퟏ휕 휕
+퐞풌 ퟐ휕 휕

푃(0)
⎦
⎥
⎥
⎥
⎥
⎤

(푥 − 푥 ) 	(4.14 

 
The series solution to the foregoing equation begins 
by using a trial 퐛 . 
퐛풌(푡) = ∑ 퐶∞ (푡 − 푡 ) 푒 ( ) / (4.15) 

   
Using푥 = 푥 	± 	 [2휈(푡 − 푡 )] / , then 
  

퐛풌(푥 ) =
퐶 (푥 − 푥 )

(2휈) /

∞

푒 ( ) /  

                (4.16) 
where the  CN and  “a”  are constants. Computation of 
퐛풌  with the use of the equation for 퐛 (t), followed 

by use of 푥 = 푥 	± 	 [2휈(푡 − 푡 )] / to express 퐛풌  
as a function of (푥 − 푥 ), use of the equation for 
퐛 (xk), expanding the exponential function by a 
Taylor’s series to second-order, rearranging and 
combining terms, and changing  (푥 − 푥 ) to  
(푥 − 푥 )   , changes(푥 − 푥 ) 퐛풌   into: 
 
ν퐁풌(0) +∑ 퐴, , , (푥 − 푥 ) = 0,  
            (4.17) 
where ------------------------------------------------ 
퐴

=
2(푁 − 2푟 − 1)

4(2휈) (푁 − 2푟)!

/

휕 휕 퐁 (0)
∞

 

 
−훼 (푁− 3) 퐶 + 훼 (푁 − 2) (푁 − 1)퐶  

 
−2푎(푁 − 1) 퐶 + 2(푁 − 1)퐶  

 

퐴 =
−푎 휈

8 퐶 +
3푎 휈

2 퐶  

+
−9푎휈

4 퐶 +
3휈

4 퐶 + (2휈) 휕 휕 퐟(0) 

 

+
3
8 휈휕 +

1
4휕 휕 +

1
4

(2휈) 휕 퐁풌(0) 
 

퐴 =
푎

2(2휈) / 퐶 −
2푎

(2휈) / 퐶  

+
1

(2휈) / 퐶 +
2
3 휈휕 퐁풌(0) + 0 + 흏풙풌

ퟐ 퐟(0) 

 

퐴 = −
푎
2 퐶 +

1
2 퐶 + 휕 퐟(0)

+
ퟏ
ퟐ 휈휕 + 휕 퐁풌(0) 

−
퐞 휕 + 퐞 휕 휕

+퐞 휕 휕
푃(0) 

  
Equating the Aifor each power of(푥 − 푥 ) to zero, 
the coefficients are obtained in the form Cn = 
Cn(C1),giving the complete solution.  
 
4.3 Analysis of Solution   
Bounded solution: Using 퐛 = 	퐛 (푥 ),  the -th 
derivative of퐛 is 
 

푑 퐛
푑푥 = 	 훽 퐶 (푥 − 푥 ) ( )

∞

 

X         푒푥푝 ( ) / (푥 − 푥 )  (4.18)   

훽 = ( ) / ( ) /
훼
푚

!
[ ( )]!

  
(4.19) 

 
and where N  - m. At 푡 = 푡 , 퐛 |풙ퟎ풌 = 0, 

since	푥 = 푥 att = t0.Hence, 푙푖푚| |→∞| 퐛 |풙ퟎ풌| = ퟎ  
for any , implyingbkconverges as |xk|∞.  
Incompressibility: Eqn.(4.2) is the condition for a 
velocity vector field v to be divergence-free. If kx

  
is taken on each side of (4.2), it becomes div Bk = 0. 
In differential geometry, the divergence of vector 
field Bk on the oriented cotangent space  T*Mx is the 
density in the expression for the 3-form on T*Mx. 
 

   
w 3 = div Bk( )dbk Ù dxk Ù dt  (4.20) 

where3defines the sources in an elementary 
parallelepiped with edges(, , ) and tangent 
vectors T(T*Mx), where dbj, dxj and dt  are basis 
differential one-forms for cotangent space T*Mx at 
point (x1,…, xn) of M, where dbjdxjdt is the 
volume form and  is an arbitrarily small number.  In 
order for div Bk = 0, then dbjdxjdt (, , ) = 0.  
For tangent vector  and arbitrary tangent vectors , 
, 
 

휉 =
푑퐛풌
푑푡 휕퐛풌 +

푑푥
푑푡 휕 + 휕 										(4.21) 

휉 = 훽퐛풌
퐛풌 휕퐛풌 + 훽 휕 + 휕 (4.22) 

휉 = 휅퐛풌
퐛풌 휕퐛풌 + 휅 휕 + 휕 	(4.23)		 

    
thendbjdxjdt (, , ) = 0  only if  
 

훽퐛풌 휅 − 1 − 훽 휅퐛 − 1 + 휅퐛 − 휅
= 0																																					(4.24) 
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If the volume of this parallelepiped is in the same 
region of space in which the motion of the system 
occurs, then the divergence equation are fulfilled.          

(5.19) 
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