IDENTIFICATION OF METALLURGICAL SULPHURIC ACID PLANTS PRODUCTION LINE BOTTLENECKS

1MORTEZA AMIRI, 2HOSSEIN ALIHOSSEINPOUR

1Senior process engineer, Fanavarn Parsian Company (FAPCO.)
2Process Engineer, Iran Oil Refinery Company
E-mail: 1m_amiri@alum.sharif.ir, 2hosseinpour@iranol.ir

Abstract- Sarcheshmeh Copper Smelter in Kerman Province, Iran is equipped with a sulphuric acid plant that treats the smelter off-gases containing low SO₂ concentrations to produce sulphuric acid with single absorption system. There is provision in the design to convert the plant from single to double absorption would allow it to handle higher SO₂ concentrations and produce more sulphuric acid. This study examines various options for handling the off-gas connected with implementing new technology at NICICO’s Sarcheshmeh Copper Smelter by steady state simulation of the sulphuric acid plant by ASPEN PLUS V.8 process simulation software and Plant data extracted from DCS (Distributed Control System) employed for validation of the model. The modeling results agree very well with the real plant data. There are two ways to increase production capacity in sulphuric acid plants: increase SO₂-laden gas flow rate and increase SO₂ concentration. In obedience to the plant design basis, gas flow limited by the plant blower. Increase SO₂ concentration, increases converter first bed temperature which is harmful for catalysts. Also heat capacity of gas-gas heat exchanger for decrease 1st bed outlet temperature is another obstacle to increase SO₂ concentration boundlessly. According to simulation results, via minor changes in available equipment, it is possible to increase production capacity about 50% rather to main design by increase SO₂ concentration about 50% under strict environmental regulations. Beside increase production rate, SOx emissions from the plant keep under environmental regulations, less than 300 ppm. Besides controllability, operability and optimization studies the plant model is also useful for operator training and various scenario assessments.

Keywords- Sulphuric acid, Metallurgical, Simulation, Debottlenecking, Double Absorption.

I. INTRODUCTION

Around 200 million metric tons of sulphuric acid is manufactured per year- Most of it from strong SO₂ (~12%) gas. SO₂ in smelting and roasting gas accounts for about 30% of sulfuric acid production. Two and a half to four tonnes of sulphuric acid are produced for every tonne of copper smelted from sulphide concentrates [5]. Smelting copper from sulphide concentrates involves oxidation. Significant by-products are iron oxide and sulphur dioxide. The iron oxide is combined with flux to form molten slag, which is processed for copper recovery, then discarded. The sulphur dioxide gas is made into sulphuric acid. The National Iranian Copper Industries Company (NICICO) operates the Sarcheshmeh Copper Smelter in Kerman Province, Iran. The smelter is equipped with a sulphuric acid plant that treats the pierce smith converter furnaces off-gases to produce sulphuric acid. The sulphuric acid plant is a single absorption plant designed for initial production capacity of 100,000 TPA of H₂SO₄ expressed as 100% H₂SO₄, to treat off-gases containing low SO₂ concentrations. The feed gas to the existing plant is taking from the Pierce Smith (P.S) converters after cooling and dedusting in the existing hot dust precipitators. The plan was that when upgrades to the smelter were implemented, the sulphuric acid plant could be converted to a double absorption plant that would allow it to handle higher SO₂ concentrations and produce more sulphuric acid. The acid plant has been designed based on existing converter off-gas characteristics for a future capacity of at least 300,000 TPA.

II. ASSUMPTIONS

The following assumptions have been made for this study:
- Minimum O₂ to SO₂ ratio for conversion is 0.8.
- The effluent treatment system is assumed to be adequately sized.

III. THE METALLURGICAL SULPHURIC ACID PLANTS

The metallurgical sulphuric plant is physically the most complex type of sulphuric acid plants, and hence the most expensive in terms of fixed capital investment and manufacturing expenses. The manufacture of sulphuric acid in metallurgical sulphuric acid plants involves three basic steps:
1) Purify and dry the SO₂-laden gas
2) Conversion of SO₂ to SO₃
3) Absorption of SO₃ in water solution to form H₂SO₄.

The 3D plan of main equipment of a typical metallurgical sulfuric acid plant shown in Figure 1.

1.1. FEED GAS

The primary purpose of metallurgical operations with sulphide ores is the production of base metal, such as copper. Smelting process involves melting sulphide concentrates in a furnace at 1500K in an oxidizing atmosphere. The overall reaction is:
\[\text{CuFeS}_2(s) + O_2 \rightarrow Cu + Fe \rightarrow S(l) + Fe(O)(l) \]

Production of sulphuric acid is carried out mainly as a means of limiting the emission of sulphur dioxide
(SO₂) to the atmosphere from these operations. The acid thus obtained becomes a saleable by-product.

The concentration of SO₂ in gas derived from metallurgical sources has traditionally been lower than in gas derived from sulphur burning (although the difference is becoming less with the adaptation of modern flash smelting techniques). Therefore, for a given quantity of SO₂ processed, the total volume of gas is often greater for a metallurgical plant. This results in larger and more expensive equipment.

1.2. FEED Gas Cooling And Purification
SO₂ gas generated from metallic ores contains fine solids, metallic vapours, acid mist and water vapour which must be removed by scrubbing and cooling in a wet purification system. Because of their solids content, ore gases are the most difficult to clean. The gas entering dehydration must be dust free (0.001 to 0.01 g/Nm³ of gas) to avoid plugging downstream SO₂-oxidation catalyst [8]. Cleaning and cooling of the gas is accomplished by scrubbing with a weak acid solution. The acid strength and solids build-up are controlled by purging and water addition. The temperature is controlled either by cooling the circulating weak acid. The saturated gas then flows through electrostatic precipitators where acid mist and residual dust are removed.

1.3. Heat Removal And Recovery
In a sulphuric acid plant, virtually all the steps - raw material combustion, SO₂ conversion, drying, SO₃ absorption, and acid dilution are exothermic. Large amounts of heat are liberated, and the surplus must be removed in order to maintain proper thermal control in the process. The amount of excess heat available is generally a function of the SO₂ gas concentration. Therefore heat recovery has become more common in metallurgical plants.

1.4. Conversion System
Dry SO₂ gas at approximately 425°C in the presence of excess O₂ is oxidized to SO₃ by contact with vanadium catalyst.

\[
\begin{align*}
SO_2 + VO^{II} + O^2- & \rightarrow 2VO^{I} + SO_3 \\
\frac{1}{2}O_2 + 2VO^{I} & \rightarrow 2VO^{II} + O^2- \\
\text{Overall reaction:} & \\
SO_2 + \frac{1}{2}O_2 & \rightarrow SO_3
\end{align*}
\]

Since the reaction is exothermic, the gas becomes heated adiabatically and its temperature rises until the SO₂-SO₃ equilibrium is approached. The vanadium catalyst must be molten for Reactions (1) and (2) to occur. It typically melts around 680K, slightly cooler when it contains caesium ions.

The gas is cooled again to about 425°C by heat exchanger and passed through another conversion stage. The process is repeated for a total of 3 or 4 stages wherein most of the initial SO₂ is converted to SO₃.

1.5. SO₃ Absorption
The partially cooled SO₃ gas mixture from the conversion system is passed to the absorbing system where SO₃ is absorbed by intimate contact with warm 98-99 percent sulphuric acid flowing counter-current through the tower packing (Eq. 4).

\[
\text{SO}_3(g) + \frac{1}{2}H_2O(l) \rightarrow H_2SO_4(l) \tag{4}
\]

The acid becomes strengthened by SO₃ reaction with free water and increases in temperature by absorption of sensible heat from the gas as well as heat from the SO₃/H₂O reaction. Product acid is drawn from the system. Surplus heat is removed by indirect exchange of circulating acid with cooling water for the drying and final absorbing towers.

1.6. Double Absorption
The technique of double absorption is employed where very low SO₂ emissions are required. The two absorption towers in this system are notable. In a standard single-absorption plant, there will typically be three or four converter stages (for conversion of SO₂ to SO₃) followed by a single absorption stage. These designs typically permit conversion of about 97-98% of the SO₂ to SO₃ [6]. The remainder of SO₂ enters the atmosphere after the absorption tower. Conversions of 99% and higher can be accomplished by employing the double absorption technique. Here the SO₂ that remains after the first absorption stage is further reacted to form additional SO₃. The additional SO₃ so formed is recovered in a second absorber, hence the term double absorption related second absorption tower used in this kind of systems after 4th or 5th beds. Practically, the first stage oxidizes most of the SO₂-in-feed-gas and makes the product SO₃ into strengthened sulphuric acid. It makes about 95% of the plant’s new H₂SO₄. The second stage oxidizes almost all the remaining SO₂ and makes its product SO₃ into strengthened sulphuric acid. The final exit gas is very dilute in SO₂ and SO₃.

Since the reaction is exothermic, the gas becomes heated adiabatically and its temperature rises until the SO₂-SO₃ equilibrium is approached. The vanadium catalyst must be molten for Reactions (1) and (2) to occur. It typically melts around 680K, slightly cooler when it contains caesium ions.

The gas is cooled again to about 425°C by heat exchanger and passed through another conversion stage. The process is repeated for a total of 3 or 4 stages wherein most of the initial SO₂ is converted to SO₃.

1.5. SO₃ Absorption
The partially cooled SO₃ gas mixture from the conversion system is passed to the absorbing system where SO₃ is absorbed by intimate contact with warm 98-99 percent sulphuric acid flowing counter-current through the tower packing (Eq. 4).

\[
\text{SO}_3(g) + \frac{1}{2}H_2O(l) \rightarrow H_2SO_4(l) \tag{4}
\]

The acid becomes strengthened by SO₃ reaction with free water and increases in temperature by absorption of sensible heat from the gas as well as heat from the SO₃/H₂O reaction. Product acid is drawn from the system. Surplus heat is removed by indirect exchange of circulating acid with cooling water for the drying and final absorbing towers.

1.6. Double Absorption
The technique of double absorption is employed where very low SO₂ emissions are required. The two absorption towers in this system are notable. In a standard single-absorption plant, there will typically be three or four converter stages (for conversion of SO₂ to SO₃) followed by a single absorption stage. These designs typically permit conversion of about 97-98% of the SO₂ to SO₃ [6]. The remainder of SO₂ enters the atmosphere after the absorption tower. Conversions of 99% and higher can be accomplished by employing the double absorption technique. Here the SO₂ that remains after the first absorption stage is further reacted to form additional SO₃. The additional SO₃ so formed is recovered in a second absorber, hence the term double absorption related second absorption tower used in this kind of systems after 4th or 5th beds. Practically, the first stage oxidizes most of the SO₂-in-feed-gas and makes the product SO₃ into strengthened sulphuric acid. It makes about 95% of the plant’s new H₂SO₄. The second stage oxidizes almost all the remaining SO₂ and makes its product SO₃ into strengthened sulphuric acid. The final exit gas is very dilute in SO₂ and SO₃.
IV. STEADY STATE SIMULATION

Block flow diagrams of gas cleaning unit and contact section illustrated respectively in figures 3 and 4. In another study, both gas cleaning unit and contact section simulated in one model and for simulation of all heat exchangers Aspen Exchanger Design and Rating (EDR) has been used. In this way any change in FEED GAS characteristics (constituents concentration, flow rate and temperature) shows its effects on downstream equipment outlet parameters such as flow, temperature and eventually final product. In this study, the steady state model in Aspen Plus implemented for investigation production increase bottlenecks and debottlenecking the production line of Sarcheshmeh sulphuric acid plant. So the model modified and customized according to Sarcheshmeh sulphuric acid plant design (Figure 5). All major equipment which considered in simulation listed in table 1.

4.1. Model Validation
In order to examine the model reliability, DCS backup data employed which is appropriate source for validation of simulation. Running simulation for different FEED GAS characteristics, and comparison with the plant data shows accuracy of the model. Table 3 illustrates good consistency between simulation results and benchmark data for FEED GAS conditions (Table 2) in single absorption system.

Table 1: Simulated equipment in model

<table>
<thead>
<tr>
<th>Tag Number</th>
<th>Equipment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-01</td>
<td>Quench Tower</td>
<td>Gas Cleaning Unit</td>
</tr>
<tr>
<td>G-02</td>
<td>Contact Tower</td>
<td>Contact Section</td>
</tr>
<tr>
<td>G-04</td>
<td>Sulphur tower</td>
<td></td>
</tr>
<tr>
<td>G-05</td>
<td>Absorber Tower</td>
<td></td>
</tr>
<tr>
<td>E-01</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>E-02</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>E-03</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>E-04</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>E-05</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>E-06</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>E-07</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
<tr>
<td>E-08</td>
<td>Heat Exchanger</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: FEED GAS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas flow:</td>
<td>130,000 Nm³/hr</td>
</tr>
<tr>
<td>Gas flow temperature:</td>
<td>330 °C</td>
</tr>
<tr>
<td>1st bed inlet temperature:</td>
<td>435 °C</td>
</tr>
</tbody>
</table>

Table 3: Simulation results and benchmark data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Plant data</th>
<th>Simulation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quench tower outlet temp (°C)</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Dryng tower outlet temp (°C)</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

4.2. Identification of Bottlenecks

Paper title: ASPEN PLUS Simulation of Double Absorption System in a Metallurgical Sulphuric Acid Plant. This article submitted for publication by authors of current paper. In this paper a simulation model for metallurgical sulfuric acid plants developed and discussed in detail.
There are number of different approaches for treating the CF1 gases utilizing the existing wet gas cleaning system/acid plant and the technologies available for high strength SO\textsubscript{2} gases. Converting the existing acid plant to double absorption is necessary to increase acid production and meet SO\textsubscript{2} emission requirements. But there are several limitations associated with the site (e.g. layout and space restrictions) that will dictate what options should be considered.

A ‘conventional’ sulphuric acid is able to handle gases containing 12 to 13% SO\textsubscript{2}. At higher SO\textsubscript{2} concentrations, the heat generated by the reaction of SO\textsubscript{2} to SO\textsubscript{3} in the first catalyst bed results in an outlet temperature that is high enough to damage the catalyst. The material of construction of the converter also has a temperature limit that can be exceeded if the SO\textsubscript{2} concentration is too high. There are several technologies available to handle high strength SO\textsubscript{2} gases to avoid the high bed 1 outlet temperature but it is not our purpose in this paper.

Here, we examined various options for handling maximum converters off-gas connected with new technology at NICICO’s Sarcheshmeh Copper Smelter. Available facilities and current plant layout considered as design constraints. For identification production line bottlenecks there are two ways: Increase FEED GAS flow rate to maximum amount (Blower capacity) and increase SO\textsubscript{2} Concentration in FEED GAS. In follow both methods investigated in details.

4.2.1. Maximum FEED GAS Flow Rate

Maximum FEED GAS flow rate determined by capacity of installed blower on the site. The existing sulphuric acid plant gas cleaning system is designed to treat 130,000 Nm3/hr. of smelter gas at a temperature of 350 °C. Also other existing equipment design were based on the blower suction and discharge capacity, so it is infeasible to replace the blower to increase FEED GAS flow rate.

4.2.2. Maximum SO\textsubscript{2} Concentration

The existing acid plant currently operates as a single absorption plant treating relatively weak SO\textsubscript{2} gas. The plant was designed to be easily converted to double absorption to handle future smelter operating conditions that would result in increased SO\textsubscript{2} concentrations of up to 7% SO\textsubscript{2} at the converter inlet. But it is not maximum SO\textsubscript{2} concentration which can be processed in the plant. Steady state simulation shows that reforming the Existing sulphuric acid plant to a double absorption plant to handle higher SO\textsubscript{2} strengths than 7% SO\textsubscript{2} can be done relatively easily.

Table 4 shows FEED GAS and converter inlet/outlet gas conditions at single and double absorption states and last column shows feed condition for simulation and its results after optimisation. According to simulation, it is possible to reduce dilution air (decrease O\textsubscript{2} to SO\textsubscript{2} ratio) which makes it possible to process more concentrated off-gas in the sulphuric acid plant.

Table 4: simulation results after optimization operating parameters

<table>
<thead>
<tr>
<th>FEED GAS</th>
<th>Single Absorption</th>
<th>Double Absorption</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO\textsubscript{2}</td>
<td>%</td>
<td>1.8</td>
<td>11.1</td>
</tr>
<tr>
<td>O\textsubscript{2}</td>
<td>%</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>O\textsubscript{2}/SO\textsubscript{2}</td>
<td></td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st bed inlet/outlet temp</th>
<th>°C</th>
<th>435/450</th>
<th>435/607</th>
<th>435/90</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd bed inlet/outlet temp</td>
<td>°C</td>
<td>420/423</td>
<td>435/441</td>
<td>435/440</td>
</tr>
<tr>
<td>3rd bed inlet/outlet temp</td>
<td>°C</td>
<td>423/426</td>
<td>435/441</td>
<td>435/440</td>
</tr>
<tr>
<td>Acid Product</td>
<td>MTP</td>
<td>290</td>
<td>950</td>
<td>1400</td>
</tr>
<tr>
<td>SO\textsubscript{2} in stack</td>
<td>ppm</td>
<td>250</td>
<td>280</td>
<td>145</td>
</tr>
</tbody>
</table>

4.2.3. Catalyst degradation

The first impact of increase SO\textsubscript{2} Concentration is higher temperature beyond maximum allowable temperature for safe operation in 1st bed of converter which, unfortunately, catalyst begins to lose its catalytic power above about 630 °C due to the formation of unreactive vanadate ions and by non-reversible reaction with the silica substrate (Figure 6).

This problem is overcome by using catalyst contains caesium ions, which promotes rapid SO\textsubscript{2} oxidation at cool temperatures (~390 °C) where equilibrium SO\textsubscript{3} production is efficient. The addition of cesium (Cs) salts to the conventional alkali-vanadium sulphuric acid catalyst formulations has long been known to enhance the low temperature properties of the catalyst [11]. So replacing potassium-promoted catalysts with caesium-promoted catalyst, SO\textsubscript{2} oxidation must be done between ~390 and 630 °C (Figure 7). It is because we set first bed inlet temperature 390 °C to limit outlet temperature in simulation.

Figure 6: Maximum percentage of SO\textsubscript{2}-in-feed-gas that can be oxidized when equilibrium is attained in a bed.

\[1Converter Furnace\]

Identification Of Metallurgical sulphuric Acid Plants Production Line Bottlenecks

91
4.3. Results and discussion

4.3.1. SOx emissions

A current focus within the sulphuric acid industry is to reduce sulphur dioxide emissions to the atmosphere while maintaining or increasing acid production. The current legislation imposes tighter restrictions in order to reduce the impact of chemical process industry on the environment. The SOx emissions could be significantly reduced by optimizing operating parameters such as converter beds inlet temperatures and flow rates. Through the use of Caesium Promoted Catalyst, it is possible to significantly increase the SO\textsubscript{2} conversion through a double absorption plant by decreasing 4th bed inlet gas temperature and hence reduce the SO\textsubscript{2} stack emissions.

By appropriate parameter tuning, SOx emissions from the stack can be controlled less than 150 ppm. Installed control system in the plant make it possible to tune all parameter based on simulation results.

4.3.2. Production rate

According to simulation, Increase FEED GAS SO\textsubscript{2} concentration, Increase Production rate about 50%. In this way, it is possible to make the most from available plant facilities and equipment to increase profitability of the plant.

4.3.3. Heat Recovery system

To handle higher gas strengths larger gas – gas exchanger for cooling 1st bed outlet gas and SO\textsubscript{3} gas cooler for cooling final absorbing tower are required. Rigorous simulation of the heat exchanger shows its surface area is big enough to handle required heat load so it does not need any redesign (Table 5).

Table 5: Hot gas-gas exchanger heat loads nad surface area.

<table>
<thead>
<tr>
<th>Surface area (m2)</th>
<th>Double Absorption</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1798</td>
<td>1798</td>
</tr>
<tr>
<td>Heat load (MBTU/hr.)</td>
<td>27</td>
<td>32</td>
</tr>
</tbody>
</table>

But increase surface area of SO\textsubscript{3} gas cooler is inevitable otherwise final absorbing tower inlet gas temperature exceed more than allowable temperature (~250 °C) for efficient absorption in the tower (Table 6).

Table 6: SO\textsubscript{3} gas cooler heat exchanger heat loads and surface area.

<table>
<thead>
<tr>
<th>Surface area (m2)</th>
<th>Double Absorption</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>700</td>
<td>850</td>
</tr>
<tr>
<td>Heat load (MBTU/hr.)</td>
<td>6.3</td>
<td>7.15 MBUT/hr.</td>
</tr>
</tbody>
</table>

Also the acid circulation system will need be designed to handle higher acid flows and higher heat loads. The Absorbing Acid Cooler will need to be increased in size (i.e. surface area) to handle the higher acid flow and heat load, too. Current acid coolers are Plate heat exchanger type. In order to increase surface area, number of effective plates should increase. But this changes are not so vital and can be done easily.

CONCLUSIONS

In this study, we used modeling technology in debottlenecking existing plant, achieving high production capacity and profitability of the plant, increasing energy recovery, and process analysis to optimize plant operations to meet environmental regulations. Here, we use previously developed model for further study of debottlenecking a metallurgical sulphuric acid plant. The steady state models, implemented in ASPEN PLUS includes a catalytic reactor (four pass converter), heat exchangers such as SO\textsubscript{3} gas cooler and gas-gas heat exchangers, mixers, splitters and absorption columns. The kinetic parameters were fitted to the real plant data, while the remaining model parameters were estimated using classical correlations.

The simulation used to evaluate the behaviour of the plant and detect changes in product quality and capacity, as well as for optimization of the total amount of SOx released in the in the atmosphere. Considering that the sulphuric acid plant is a brownfield site, the study considered available facilities and current plant layout as design constraints. Although in obedience to the plant design basis, gas flow limited by the plant blower and increase gas flow will affect equipment dimensions. Increase SO\textsubscript{2} Concentration by decreasing dilution air and proper tuning of control parameters, will lead to production increases about 50% while SOx emissions meet environmental regulations, too.

ACKNOWLEDGEMENTS

We express our gratitude to all Fanavarn Parsian Company staff for providing some basic information on metallurgical sulphuric acid plants. The support from Dr. Mohammad Naderi, direct manager of FAPCO is also acknowledged.
REFERENCES
