
International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063
Volume-6, Issue-12, Dec.-2018, http://iraj.in

A Modified Heuristic Approach for Constructing AOA Networks

1

A MODIFIED HEURISTIC APPROACH FOR CONSTRUCTING AOA
NETWORKS

1RAMI A. MAHER, 2HAMZA AL-SAFADI

1,2Isra University, Amman, Jordan

E-mail: 1rami.maher@iu.edu.jo, 2safadi007@ymail.com

Abstract - This paper introduces a heuristic algorithm, which focuses on constructing a unique AOA network for any project
from its activities, and immediate predecessor constraints list. The algorithm guarantees a minimum number of dummy
nodes even when the project involves multi-critical paths. The proposed algorithm can be performed manually as well as
automatically. The final output of the algorithm is to determine two network matrices that can be used directly for optimal
project scheduling. The algorithm is explained through a detailed example of the process of converting any immediate
predecessor list to AOA networks.

I. INTRODUCTION

There are two available representation methods for
planning and scheduling project networks that are
activities on arcs AOA and activities on nodes AON.
Both AOA and AON network's diagram are widely
used in project planning and scheduling, but they
have some fundamental different in characteristics
and representation [1]. AOA network represents
project activities by arcs, which have specific length
depending on the duration of the activity where, a
node is an event used to represent activity end and
separate the activity (an emanating arc) from each of
its immediate predecessors (an entering arc). The
precedence relationships between the activities can
thereby by the sequencing of the arcs. On the other
hand, AON networks represent the project activities
by nodes containing specific information about each
activity such as name and duration of the activity.
Arcs in AON are only used to determine the
precedence relationship between the activities. Each
emanating, and entering arcs from the activity node
represent the immediate predecessor and successor
activities.

Choosing between these two types is based on the
individual project requirement. There are several
differences between AOA and AON [2, 3]. Most of
these differences address that the AON is more
preferable for project management. In addition, AOA
has the problem of adding dummy activities. In spite
of this, when the AOA is represented mathematically
by corresponding network matrices, it becomes very
suitable for optimizing the project scheduling. These
matrices are easily and systematically created from
AOA networks, especially for the large-scale and
mega project [5, 6]. Researchers contribute in this
field in different ways. In section V, these
contributions are compared to the proposed heuristic
algorithm.

The first heuristic algorithm to generate and construct
AOA was introduced by Bernard Dimsdale, who

discussed in his research a computer procedure to
increasing overall efficiency in using existing
programs by obtaining networks with certain
minimal properties [7]. In 1968, Fisher and Liebman
proposed heuristic algorithm used topologically order
to create the minimial number of dummy activities
and nodes for any given precedence relations [8]. In
1970, D.G. Corneil proposed a procedure for
constructing a event-node network to represent a set
of precedence relations, he claimed that his algorithm
produce the optimal number of nodes and arcs [9].
In 1990s Herroelen design a procedure called a
random activity network generator to generate
networks with various sizes and structure, in addition
to, provide a parameter for testing the accuracy and
efficiency[10]. Elmaghraby and Herroelen offered a
methodology and complete software to generate
project networks and provide a complexity index
[11]. Later in 2007, Cohen proposed an efficient
algorithm that ensures to create a unique AOA
network for a given precedence table[12]. In 2012,
researchers develop an algorithm that depends on the
graph theory to create the AOA network [13].
It is known that constructing AOA network suffers
the addition of dummy activities and the additional
nodes. In general, a minimum number of dummy
activities and node will save the computation time.
Thus, the main objective of this paper is to propose
an algorithm that constructs a unique AOA network
for any project from activity's list and its immediate
predecessors, which guarantee a minimum number of
dummy activities and nodes, including in a network.
The proposed algorithm can be simply used manually
as well as automatically to obtain the network
matrices.

II. ALGORITHM DESCRIPTION

The logic of the algorithm can be described in the
following points as follows:
 Each activity in AOA network has a specific

node represent the start time; therefore, the first
stage of the algorithm focusing on the

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063
Volume-6, Issue-12, Dec.-2018, http://iraj.in

A Modified Heuristic Approach for Constructing AOA Networks

2

constructing a minimum number of start nodes
for all project activities.

 Combination of the activities decreases the
number of the required node to represent the
project activities.

 Considering the rules to draw AOA networks,
there are constraints on the flexibility of drawing,
especially when some activities playing a part in
more than one unique precedence constraint.

 Dummy activities are needed when there is more
one start node or end node for the same activity.

 Dummy activities are needed when there is more
one start node or end node for the same activity.

 The algorithm establishes the end node for each
activity based on the sequencing of the activities.

 Determine the activity-network matrices.

III. DETAILS OF ALGORITHM STEPS

The basic concept of the algorithm is to establish a
unique start and end node for each activity, and add a
minimum number of the needed dummy activities to
complete the network considering the correct logical
precedence relationships between the project
activities. Mainly the proposed algorithm consists of
the four stages, as follows.

First: Constructing the start node for each activity
Let us number the given columns of activity names,
and precedence relationships as first and second
columns respectively. In this stage, it is to construct
the start node for each activity, which consists of
adding two new columns (third and fourth). The third
column contains unique immediate precedence
constraints, and the fourth column consists of the
number of these constraints. Steps of this stage can be
performed as follows:
1. Produce the third column by duplication of the

immediate precedence column (the second
column).

2. Find the repetitions in the third column, if there
are there repetitions, then they are removed and
replaced with dash symbol (-).

3. Open the fourth column and starting from 10,
and numbering the unique constraints
sequentially. Constraints are replaced by the dash
symbol (-) such to take the same number of the
first appearance of the constraint.

In this stage, it should be noticed the following note;
the third column must contain unique constraints
only, and the number of the nodes needed to represent
the project network equal at least to the number of the
unique precedence constraints plus one.

Second: Identify necessary dummy activities
The second stage of the algorithm is to define the
necessary dummy activities (if any) that required to
complete the correct sequences and save the logical
relationship between the project activities. This stage

mainly formed from three check steps, which can
guarantee the minimum number of dummy activities.
These check steps are as follows:
1. In the second column, it is to find activities,

which have one immediate predecessor. For
these activities, no dummy activities have to be
added.

2. Look again to the second column to find if there
is more than one activity, which does not
mention in the column. If so, there are two
possible cases as follows:

a. If these activities have the same
precedence activities, then the number
of the required dummies is equal to the
number of these activities minus one.

b. If these activities do not have the same
precedence, then no dummy activities
are required.

3. If there are activities, which have multiple
precedence constraints in the second column,
then there are two possible cases:

a. If one or more activities have the same
precedence activities that depend on
each other, then the numbers of dummy
activities are equal to the number of the
activities minus one.

b. If these activities do not have
dependency relationships, then:

i. If this constraint appears once,
then there is no need to add
dummy activities.

ii. If this constraint appears once,
then the number of the required
dummy activities is equal to
the number of recurring
activities.

After performing these three check steps, the
information about needed dummy activities must be
added to the generated table as rows at the end of the
table, these rows should be consisted of the required
information such as start node and end node of the
dummy activity.

Third: Constructing of the end node for each
activity
This stage of the algorithm is to construct the end
node for each activity, which consists of adding
another two new columns. The fifth column contains
the successor activities for each activity, and the sixth
column contains the end node for each activity. Steps
of this stage can be performed as follows:
1. Open the fifth column, for each activity find

where it appears as precedence constraint.
2. Open sixth column, and look to column number

three and find the number of the starting node for
successor activity(s) from the fourth column.

This stage based on the idea of the common nodes
between activities, which mean that the start node for
the successor activities represents the same end node

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063
Volume-6, Issue-12, Dec.-2018, http://iraj.in

A Modified Heuristic Approach for Constructing AOA Networks

3

for precedence activity. It should be noticed that there
are activities do not have successor activity(s), that
because it may be followed by dummy activities, or it
may be connected to the end node of the project. In
such case, additional node must be added to complete
the correct generation and constructing of the
network. Figure 1 shows a flow chart that illustrates
algorithm stages and its detailed steps.

Fourth: Determine the Activity-Network Matrices
For optimization procedures, the project has to be
described by two matrices, the activity-duration
matrix T and the activity-name matrix A. In the
former, the completion time of each activity is placed
in the corresponding matrix entry. In the latter, a
number replaces the activity name (activity A by 1,
activity B by 2, and so on). Since, in project
management network, the arcs are only towards the
project end activity, then these two matrices are
respectively defined by

T = ൞

t୧୨ > 0; ݅ ≠ j,∀ i, j → project activity
0; i ≠ j, ∀ i, j → dummy activity
0; i = j
∞; otherwise ,∀ i, j → non activity

A = ൜a௜௝ ; ݅ ≠ ݆, ∀݅, ݆ → ௜௝ݐ ≥ 0
0; ݁ݎℎ݁ݓ݁ݏ݈݁

where ݐ௜௝ are the completion time of activity, and ܽ௜௝
are numbers of the activity between the ith node and
the jth node.

IV. A ILLUSTRATIVE EXAMPLE

To explain the algorithm steps, a simple example is
used to illustrate the constructing of the AOA
network from the precedence relationship table is
introduced. In addition, it is to create the network
matrices that are the input for any management
process such as scheduling, allocation, etc. Table 1
provides the data of a 12-activity project; the duration
of each activity is omitted, but are written letter in
table 7.

The algorithm works on translating the list of the
activities to an equivalent network that can be used
project scheduling and control. In the first column,
the actual project activities are listed, and the
predecessor activities are listed in the second column
number.

The algorithm starts by copying the contents of the
second column into the third column, and replace the
repetitions in the third column by (-); in the program,
this symbol is replaced by some suitable number. For
example, activity A, B, and C have the same
precedence activity (None). The first occurrence
remains in table where the other repetitions are
replaced with (-). Other examples, can be noted in
activities E and F, which have the same predecessor

activity B. Table 2 illustrates the results of the first
stage – step 1 and 2.
The next step in the first stage is to open and fill the
fourth column, which consist of the number of unique
constraints only appears in the third column. The (-)
places in the third column take the same number of
the first occurrence in the column number. Table 3
summarizes the results of the first stage. From this
stage, minimum number of required nodes is at least
equal to the number of unique constraints plus one.

The second stage is to define the necessary dummy
activities, which are needed to complete the network.
Second stage is formed from multiple check steps,
first to check, if there are activities that have one
immediate predecessor. In the considered example,
activities A, B, C, D, E, F, G, H, and J have one
immediate predecessor activity; therefore, they do not
need a dummy activity.

Table 1 Activities List and their Immediate Precedence
1st Col. 2nd Col.

Act. Immediate Predessecor
A None
B None
C None
D A
E B
F B
G C
H D
I A , E
J F
K B , G
L H , I , J , K

Table 2 Results of first stage (step 1 and 2)

1st Col. 2nd Col. 3rd Col.
Act. Imm. Pre.

A None None
B None -
C None -
D A A
E B B
F B -
G C C
H D D
I A , E A , E
J F F
K B , G B , G
L H , I , J , K H , I , J , K

Table 3 Results of first stage

1st Col. 2nd Col. 3rd Col. 4th Col.

Act. Imm. Pre. Start
Node

A None None 1
B None - 1

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063
Volume-6, Issue-12, Dec.-2018, http://iraj.in

A Modified Heuristic Approach for Constructing AOA Networks

4

C None - 1
D A A 2
E B B 3
F B - 3
G C C 4
H D D 5
I A , E A , E 6
J F F 7
K B , G B , G 8

L H , I , J , K H , I , J ,
K 9

The second check, is to find if there is more one
activity does not mention in the second column. If
there are no such activities, then no dummy activities
must be added. Here in our example, activity L does
not mention in the second column, but there are no
other activities. Therefore, there is no need to add
dummy activities.

The third check in this stage is to find the activities
with multiple predecessor constraints. If there are
such activities, then there are two possible cases. The
first case, these activities have the same predecessor
constraints, and one of these constraints depends on
each other. The second case, these constraints do not
have the dependency relationship (such as activity are
I and activity K in our example). In such a case, there
are two other possible cases, the first case is that the
constraint appears more once time in the second
column Activity A appears more once time and
activity B also appears more once time. Therefore,
dummy activities should be added before activities, I
and K to complete the correct logical relationship
between the activities. In the finish of this stage, the
information about the needed dummy activities
should be added. Table 4 shows the final results of
the second stage after add dummy activities. Hence,
the starting nodes are all found and numbered

Table 4 Results of second stage
1st Col. 2nd Col. 3rd Col. 4th Col.

Act. Imm. Pre. Start
Node

A None None 1
B None - 1
C None - 1
D A A 2
E B B 3
F B - 3
G C C 4
H D D 5
I A , E A , E 6
J F F 7
K B , G B , G 8

L H , I , J , K H , I , J ,
K 9

D 1 A - 2
D 2 B - 3

The algorithm reaches the third stage, which is the
constructing of the end node for each activity. This
construction starts by open and fill the fifth column,
which contain the successor activity(s) for each
activity.

Filling the fifth column can be done by find where
each activity appears as a precedence in the second
column or not. In the considered example, activity A
appears as a predecessor for three activities D, I, and
the dummy activity D1. Therefore, the successor
activities for activity A are activities D, I, and D1. It
should be noticed that the successor activities for the
added dummy activities will be the activities that
required dummy activities, I and K. Table 5
demonstrates the results of step 1 from the third stage.
It is remarkable to note that the total number of nodes
becomes 10 (9 plus a finishing node) with 14
activities. Consequently, the network matrix is of
order nine.

Table 5 Results of third stage (step 1)

1st Col. 2nd
Col. 3rd Col. 4th Col. 5th Col.

Act. Imm.
Pre. Start

Node
Successor

Act.
A None None 1 D
B None - 1 E, F
C None - 1 G
D A A 2 H
E B B 3 I
F B - 3 J
G C C 4 K
H D D 5 L
I A, E A, E 6 L
J F F 7 L
K B, G B, G 8 L

L H, I, J,
K

H, I, J,
K

9 Finish

D 1 A - 2 I
D 2 B - 3 K

Step 2 of the second stage is to open the sixth
column, which contain the number of the end node
for each activity. The main idea in this step is that the
start node for any activity represents the end node for
a predecessor. Therefore, the end node will be taken
from the start node for successor activities. In our
example, activity D has a node number equal to 2,
and it represents a successor for activity A. Therefore,
the end node for activity A is 2. In addition, activities,
E and F are successors for the activity B, and by
looking into the fourth column it will be found that
the activities, E and F have the same number, which
is 3; thus, the numbering of the end node for activity
B will be 3. Table 6 shows the results of the step 2 of
the third stage.

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063
Volume-6, Issue-12, Dec.-2018, http://iraj.in

A Modified Heuristic Approach for Constructing AOA Networks

5

Table 6 Results of third stage
1st

Col.
2nd

Col.
3rd

Col.
4th

Col.
5th

Col.
6th

Col.

Act. Imm.
Pre. Start

Node
Successor

Act.
End

Node
A None None 1 D 2
B None - 1 E, F 3
C None - 1 G 4
D A A 2 H 5
E B B 3 I 6
F B - 3 J 7
G C C 4 K 8
H D D 5 L 9
I A, E A, E 6 L 9
J F F 7 L 9
K B, G B, G 8 L 9

L H, I,
J, K

H, I,
J, K 9 Finish 10

D 1 A - 2 I 6
D 2 B - 3 K 8

For activities that do not have successor activities,
because these activities connected to the end node of
the project, a new number for the nodes numbering
must be added. For instance, activity L represents the
project finish activity; thus, the finish node will be
10.

Table 7 shows the final results of applying the
proposed heuristic algorithm for constructing the
AOA.

Table 7 Activities duration and (from-to) representation
Activity t From – To

A 1 1 – 2
B 8 1 – 3
C 6 1 – 4
D 5 2 – 5
E 7 3 – 6
F 9 3 – 7
G 4 4 – 8
H 6 5 – 9
I 9 6 – 9
J 4 7 – 9
K 8 8 – 9
L 5 9 – 10
D 1 0 2 – 6
D 2 0 3 – 8

In the table, an assumed value of activity duration is
listed too. Hence, the two matrices ܶ and ܣ are given
by the following (10 × 10) matrices; number of
nodes is 10. Obviously, the dummy activities have
zero entries in the ܶ matrix.

ܶ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 8 6 ∞ ∞ ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ 5 0 ∞ ∞ ∞ ∞
∞
∞
∞
∞
∞
∞
∞
∞

∞
∞
∞
∞
∞
∞
∞
∞

0
∞
∞
∞
∞
∞
∞
∞

∞
0
∞
∞
∞
∞
∞
∞

∞
∞
0
∞
∞
∞
∞
∞

7
∞
∞
0
∞
∞
∞
∞

9
∞
∞
∞
0
∞
∞
∞

0
4
∞
∞
∞
0
∞
∞

∞
∞
6
9
4
8
0
∞

∞
∞
∞
∞
∞
∞
5
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

A =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 2 3 0 0 0 0 0 0
0 0 0 0 4 13 0 0 0 0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

5
0
0
0
0
0
0
0

6
0
0
0
0
0
0
0

14
7
0
0
0
0
0
0

0
0
8
9

10
11
0
0

0
0
0
0
0
0

12
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

CONCLUSIONS

This paper introduces a heuristic approach for
generating AOA networks focusing on minimizing
the number of dummy activities and saving the
logical relationships between the project activities.
The proposed algorithm ensures that the generated
AOA network is unique for any given precedence
table. The basic concept of the algorithm is to
establish unique start and end node for each activity
with a minimum number of needed dummy activities
considering the precedence logical relationship
between the activities. It is summarized assigning
numbers at the start and end node for all activities.
The algorithm formed mainly from four stages that
are; construct the start node, identify necessary
dummy activities and construct the end node. Future
research could examine the algorithm on various
complexities of the precedence lists. And it will be
important to measure the complexity index for
algorithm stages. Moreover, the algorithm is ready
programmed to be augmented with any optimization
process.

REFERENCES

[1] Lewis, J. P,” Project Planning, Scheduling and Control”, 4E:

McGraw-Hill Pub. Co., 2005
[2] Demeulemeester, E., Herroelen, W., ”International series in

operations research and management science”, Vol. 49, 2002
[3] Elmaghraby, S., Kamburowski, J., ”On project representation

and activity floats”, Arabian Journal for Science and
Engineering, 15(4 B), pp. 627-637, 1990

[4] Amer m. Al-Qnahrah, ”Optimization of Multi-Resource
Alocation in Large-Scale Project Management”, M.Sc. thesis,
Isra University-Amman, April 2015

[5] Maher F. Yousif, “Multi-Project Scheduling with Limited
Resources Management in Construction Industry”, M.Sc.
thesis, Isra University-Amman, August 2017

[6] Dimsdale, B., ”Computer construction of minimal project
networks”, IBM systems journal, 2(1), pp .24-36, 1963

[7] Fisher, A., ” Computer construction of project networks”,
Communications of the ACM, 11(7), pp. 493-497, 1968

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063
Volume-6, Issue-12, Dec.-2018, http://iraj.in

A Modified Heuristic Approach for Constructing AOA Networks

6

[8] Corneil, D. G., Gotlieb, C., Lee, Y., “Minimal event-node
network of project precedence relations”, Communications of
the ACM, 16(5), pp. 296-298, 1973

[9] Demeulemeester, E., Dodin, B., Herroelen, W., “A random
activity network generator”, Operations research, 41(5), pp.
972-980, 1993

[10] Agrawal, M., Elmaghraby, S. E., & Herroelen, W. S.
“DAGEN: A generator of test sets for project activity nets”,

European Journal of Operational Research, 90(2), pp. 376-
382, 1969

[11] Cohen, Y., & Sadeh, A., “A new approach for constructing
and generating AOA networks”. Journal of Engineering,
Computing and Architecture, 1(1), pp. 1-13, 2007

[12] Nasser Eddine Mouhoub, Samir Akrouf,”Generating PERT
Network with Temporal Constraints”, Studia Univ. Babes-
Bolyal Informatica, Vol. LVII, No.4, 2012

Figure 1 Heuristic algorithm to generate AOA



