INVESTIGATION THE SOIL AQUIFER TREATMENT FOR DOMESTIC WASTEWATER TREATMENT, XAYSETHA DISTRICT VIENTIANE CAPITAL, LAO PDR

KONG XIONG, POONSAK MIPHOKASAP, PUNTIP JONGKROY, PAUL PAVELIC

1 Master student of Sustainable Land Use and Natural Resource Management, Faculty of Graduate School, Kasetsart University, Thailand;
2,3 Lecturer, Department of Geography, Faculty of Social Science, Kasetsart University, Bangkok, Thailand;
4 Principal Researcher, International Water Management Institute (IWMI), Southeast Asia Regional Office, Vientiane Capital, Lao PDR
E-mail: kongxiongtub@gmail.com, fsocpsm@ku.ac.th, fsocptj@ku.ac.th, P.Pavelic@cgiar.org

Abstract - The study is being carried out to investigate the potential for applying SAT in Xaysetha district, Lao PDR and investigation the most suitable site for SAT in Xaysetha district. The methodology was used MCDA, GIS, RRA and semi-structured interview to rank SAT site and investigate the physical, social and economic factor at the most suitable site (Nonvay site). The results of SAT ranking indicated that Xaysetha district has a potential to construct up to 3 high suitable site, 8 moderate suitable sites, and 6 low suitable sites. On the other hand, the results of physical, social and economic assessment at Nonvay site represented that DO was exceeded the Lao National Environmental Standard, and the soil infiltration rate is about 24 mm/hour (0.58 m/day). The households around Nonvay site have their own land and they access to water use and have a relationship with 9 organizations. They product wastewater was estimate 150 liter/person/day. And the land available for SAT is worth to US$ 39 million.

Keywords - Domestic Wastewater Treatment, Soil Aquifer Treatment, Xaysetha District, Vientiane Capital.

I. INTRODUCTION

Soil Aquifer Treatment (SAT) is a low-cost of wastewater treatment technology that relies on natural treatment processes in soil and aquifers. It improves the quality of sewage effluent and reduces the risk from water-borne diseases. It has been applied in many countries of the world including Israel, United States of America and Australia. The SAT has a potential for more widespread application but has never before been implemented in Lao PDR, where wastewater treatment in the country is still challenged, due to limited financial resources and use of wastewater treatment technologies.

The SAT method can be effective but requires several steps. First, it needs a pipe to connect the wastewater source so that it discharges to the SAT infiltration basin. Then, such wastewater will be treated by each layer of the soil in the unsaturated zone until it reaches aquifer and mixes with the ambient groundwater. Finally, it is returned to a river or the sea or else may be recovered using boreholes and reused for multiple purposes like agriculture, small industrial, park watering, street cleaning etc.

In the first phase of the research reported that SAT potential sites in Xaysetha District, Vientiane Capital, where wastewater related problems are faced. The results indicated that Xaysetha district has a potential to construct up to 17 SAT sites (infiltration basins), each associated with the major villages or village clusters in the district. Moreover, this analysis shows that each site has its own specific land area, wastewater pipe length, and capacity of household wastewater treatment. However, that research only relies on Geography Information System (GIS) and Remote Sensing (RS) methods without a field investigation. It follows that the success of a technological system such as SAT strongly relies on appropriate site investigation. The correct SAT site investigation, indeed, constitutes a fundamental first step in the process of SAT site implementation to make a decision whether to proceed the pilot scale testing and thus to make efficient use of human and financial resources.

The present study aims to: 1) rank the SAT sites for household wastewater treatment in Xaysetha district, Vientiane Capital, and 2) assess the potential of physical, social and economic factors at Nonvay site, Xaysetha district, Vientiane Capital. This research is intended to benefit relevant government and line agencies responsible for solving wastewater issues in Lao PDR, particularly in Vientiane Capital. Meanwhile, it will provide a database for relevant sectors or organizations, who wish to consider or apply SAT technology in the Lao PDR or others low-income countries.

II. METHODOLOGY

2.1 SAT site ranking
In order to identify high, moderate and low suitable sites for SAT in Xaysetha district. Appropriate parameters such as soil type, slope, pipe length, and elevation were weighted with respect to their importance to SAT, using GIS overlay function and
Multi-Criteria Decision Analysis (MCDA) techniques. As shown in the table 1.

Table 1: Key considerations in selection of SAT

<table>
<thead>
<tr>
<th>Criterion</th>
<th>High suitability</th>
<th>Moderate suitability</th>
<th>Low suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil type</td>
<td>Sandy</td>
<td>Loamy</td>
<td>Clay</td>
</tr>
<tr>
<td>Slope</td>
<td>0 - 5%</td>
<td>5 - 15%</td>
<td>>15%</td>
</tr>
<tr>
<td>Pipe length</td>
<td><5 km</td>
<td>5 - 20 km</td>
<td>>20 km</td>
</tr>
<tr>
<td>Elevation*</td>
<td>>3 m</td>
<td>1-3 m</td>
<td><1 m</td>
</tr>
</tbody>
</table>

* Elevation difference of SAT site relative to wastewater sources

2.2 SAT site investigation

Due to the results of SAT sites, there are 3 high suitable sites, which labelled as K, N and M, shown in fig.1. The site K is the most suitability for SAT infiltration basin because it is a high suitable site and has a potential to treat more households than others which K (1290 households), M (54 households) and N (29 households). In addition, the site K is the research study (SAT investigation site). Accordingly to the pre-survey, the site K is located at Nonvay village, Xaysetha district, Vientiane Capital. Therefore, the aim of the research is deeply assessed the potential of physical, social, and economic factors for SAT infiltration basin at Nonvay site (site K).

The physical factors were assessed wastewater quality, wastewater generation, and soil infiltration rate. The wastewater quality was tested pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS) and temperature in the small drainage, which discharges household wastewater to the Nonvay site, using Cond 3210 and Consort C5010 tools. Meanwhile, the wastewater generation was assessed by selecting a small community where each household discharge their wastewater to the same drainage. The volume of wastewater discharge was tested at the end of the outlet, using bucket and stopwatch. The wastewater generation was equal to the volume of wastewater discharge minus the total of water use by the local community. And the soil infiltration rate was tested at Nonvay site, using double rings infiltrometer with a total diameter of 60 cm.

The social dimensions associated with social, cultural and institutional factors were assessed, using Rapid Rural Appraisal (RRA) along with the natural resources was assessed, using the semi-structured interviews.

The economic factor was focused on the land cost of SAT site at Nonvay village. The land ownership and head of the Nonvay village were the key informants, using semi-structured interview.

III. RESULTS AND DISCUSSION

3.1 SAT sites in Xaysetha district

According to the results of SAT sites ranking, Xaysetha district has a potential to construct up 3 high suitable sites, 8 moderate suitable sites and 6 low suitable sites. As illustrated on fig. 1.

![Fig.1 Ranking of SAT sites in Xaysetha district, Vientiane Capital, Lao PDR](image)

3.2 SAT site investigation at Nonvay village

1) Physical factors

- **Wastewater quality**

According to results of wastewater quality testing in the small drainage, which discharges household wastewater to the Nonvay site, it was indicated that the wastewater quality of pH, temperature, DO, EC and TDS was 7.78, 27 °C, 0.1mg/l, 566 μS/cm, 380 mg/l, respectively. When comparison with the wastewater quality standard, the DO was exceeded the Lao National Environment Standard.

<table>
<thead>
<tr>
<th>parameter</th>
<th>wastewater quality</th>
<th>Standard*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.78</td>
<td>6.5 – 8.5</td>
</tr>
<tr>
<td>Temp (°C)</td>
<td>28</td>
<td>25 - 35</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>0.1</td>
<td>> 6</td>
</tr>
<tr>
<td>EC (μS/cm)</td>
<td>566</td>
<td>< 1000</td>
</tr>
<tr>
<td>TDS (mg/l)</td>
<td>380</td>
<td>500 - 600</td>
</tr>
</tbody>
</table>

* Lao National Environment Standard

- **Wastewater generation**

According to the results of wastewater generation in the outlet of the small drainage, which small groups of households discharge their wastewater indicated that wastewater generation at Nonvay village is approximately average 150 L/person/day.

- **Soil infiltration rate**
The line graph below describes the soil infiltration rate at Nonvay site. It illustrated that between 5 to 60 minutes, the calculative infiltration rate was not steady but it was stable since 60 to 120 minutes which is average 8 mm/20 minutes. Consequently, the infiltration rate on Nonvay site is approximately 24 mm/hour (0.58 m/day). In overall, the soil infiltration rate which is 0.36 – 1.2 m/day is moderate suitable. Therefore, the soil infiltration rate at Nonvay site is 0.58 m/day, it means that the SAT site at Nonvay village is moderate suitable.

2) Social factors

- Social, cultural, and institutional resources
 The results of holding a local community meeting with local people at Nonvay site shown that the local community has a relationship with 9 organizations such as water supply enterprise, school, office of natural resources and environmental, office of public works and transportation, temple, Xaysetha hospital, office of public health, department of water resources, and village office. These organizations take a different role for wastewater addressing to the local community.

3) Economic factor

According to the land cost assessment at Nonvay site, the average of land cost is approximately US$ 50 per square meter. Therefore, the Nonvay site covers 774,641 m², so the total land cost is US$ 39 million.

CONCLUSION

The study is being carried out to investigate the potential for applying SAT in Xaysetha district, Lao PDR and investigation the most suitable site for SAT in Xaysetha district. The methodology was used MCDA, GIS, RRA and semi-structured interview to rank SAT site and investigate the physical, social and economic factor at the most suitable site (Nonvay site). The results of SAT ranking indicated that Xaysetha district has a potential to construct up to 3 high suitable site, 8 moderate suitable sites, and 6 low suitable sites. On the other hand, the results of physical, social and economic assessment at Nonvay site represented that DO was exceeded the Lao National Environmental Standard, and the soil infiltration rate is about 24 mm/hour (0.58 m/day). The households around Nonvay site have their own land and they access to water use and have a relationship with 9 organizations. They product wastewater was estimate 150 liter/person/day. And the land available for SAT is worth to US$ 39 million.

REFERENCES

Investigation The Soil Aquifer Treatment for Domestic Wastewater Treatment, Xaysetha District Vientiane Capital, Lao PDR

soil aquifer treatment plant at the arid zone research institute, Northern Territory Government.

