AUTOMATED DETECTION OF GLAUCOMA FROM RETINAL IMAGES USING IMAGE PROCESSING TECHNIQUES

1DIBIA, CHIMA AMBROSE, 2NWAWUDU SIXTUS EZENWA

1Department of Optometry, College of Applied Medical Sciences, Qassim University, Saudi Arabia
2International Bio metrics, Université Paris-Ést Créteil, France
E-mail: 1d.ambrose@qu.edu.sa, 2ezenwawudu@yahoo.com

Abstract - The disorders related to retina of the eye like Glaucoma, Diabetic Retinopathy (DR), and Age-related Macular Degeneration (AMD) etc., can cause visual impairments. These disorders can be diagnosed by the ophthalmologists or Optometrist with the help of the Digital image processing. The retinal fundus images of the patients are procured by capturing the fundus of the eye with a digital fundus camera. The Automated method of disease detection can be used against the manual method of observing several retinal fundus images to save time. This study aims to explore the possibility of computerised diagnosis of glaucoma and to develop a novel image processing algorithm to reliably detect the presence glaucoma from a sample retinal fungus images. Some image processing algorithms to automate the diagnosis glaucoma on the eye are developed. This study curbs the human error while detecting the presence of glaucoma in the eye using image processing and automation. We achieved this goal using Image Segmentation and Morphological features descriptors. We also built the system in a robust manner so that it is unaffected by the exceptional conditions and achieved high percentage of sensitivity, specificity, positive prediction and negative prediction results.

Keyword - Glaucoma, Retina, Image processing, Optometrist, Segmentation

I. INTRODUCTION

Introduction Glaucoma is one of the most common causes of preventable blindness [1] and official population projections and epidemiological prevalence surveys predict that the number of glaucoma cases will increase by a third in the next twenty years [2]. Glaucoma, and those at risk of suffering from glaucoma, constitute a major part of the workload of secondary care eye services [3]. However, patient overload is not the only problem. Currently, referrals for suspected glaucoma are usually initiated by a community optometrist and then assessed at hospital by trained ophthalmologists. The reported diagnostic accuracy for detecting glaucoma by optometrists is suboptimal: only 20-30% of these referrals actually have glaucoma, and 45% of patients are discharged after their first visit [4].

This illustrates the inefficiency of current glaucoma detection methods and causes avoidable distress and worry to patients and carers. Interventions for optometrists, such as glaucoma training [5] or agreed guidelines [6], do not appear to affect the rates of false positive referrals. Even definitive glaucoma diagnosis, carried out by ophthalmologists, are not exempt from drawbacks: clinical optic nerve assessment is limited by subjectivity and reliance on examiner experience, while new diagnostic techniques for assessment of the structural changes at the optic nerve head (ONH) and retinal nerve fibre layer (RNFL) are expensive and therefore not widely available. In this context, automatic detection methods are highly valuable for early glaucoma diagnosis [1, 4], especially considering that glaucoma can be treated effectively if detected at an early stage.

II. OBJECTIVES

We propose a method based on the automatic analysis of the eye fundus, which brings together the expertise of human practitioners and the cost-effective advantages of computers. Given that digital fundus cameras are relatively inexpensive and are already widely available in optometrists’ and hospital eye services, our system could potentially be deployed as a systematic screening programme for glaucoma. Our method differs from other state-of-art systems in the usage of geometric parameters of the ONH structures that change in case of glaucoma disease: optic disc diameter, optic disc area, cup diameter, rim area, mean cup depth, etc. These features are extracted from the automatic segmentation of the structures and used for training a machine learning classifier which provides the final decision given a new fundus image [4]. The usage of these features, traditionally employed in the manual analysis, has some competitive advantages regarding appearance based methods: they are hundred or thousands and they allow detection of different levels of glaucoma even in the presence of other ocular pathologies.

2.1 State of the Art

Initial attempts to automate the glaucoma diagnosis were based on quantitative parameters that can help to make the qualitative assessment more objective, reproducible and lead to a reduction of the observer variability. However, these methods were based on manually annotated ONH images [8, 21], or they lacked robustness and reliability. In response, researchers moved away from the extraction of geometrical features, which rely on good ONH segmentation, towards frameworks based on the pixel appearance of the whole retinal image [9, 17]. These
methodologies were inspired by a pipeline previously used for face and object recognition [25] and have the advantage of not needing the segmentation of the ONH. Recently Bock et al. achieved 73% sensitivity and 85% specificity in the detection of glaucoma using a fully-automated analysis of monoscopic photographs [9] based on appearance. However, this is computationally expensive, their classification depends on the camera or machinery involved and they require hundreds of positive and negative glaucoma samples for retraining. The structure of the retina and how glaucoma affects its appearance is much more subtle than the differences between faces or objects for which these frameworks were originally designed. This makes it difficult for systems only based on appearance to detect glaucoma, especially in the early stages. In the last few years there have been great advances, not only in medical image processing, but also in fundus cameras able to provide high resolution and low-noise retinal images. As a consequence, new studies have been performed showing high accuracy on the segmentation of the ONH characteristics such as disc area, disc diameter or the well-established cup-to-disc ratio. Most successful approaches are based on ONH models able to automatically adjust to the image [15, 17, 18], although this implies additional training for model generation. In general, most of these approaches have only been validated on healthy eyes under assumptions that are not valid for glaucomatous eyes. Other approaches, tested on glaucomatous examples, have been validated against human segmentation, but they were not evaluated for diagnosis since they were neither input to a classifier, nor compared against pixel based approaches [13, 14, 16]. This paper describes some basic image processing algorithms implemented in MATLAB which detects glaucoma infection on the image of a retina. Efficacies of this algorithm are demonstrated.

III. TEST ALGORITHM AND SYSTEM ARCHITECTURE

The design is essentially an image classification problem, and thus takes the form of standard pattern recognition and classification system. The overall main processing steps used through this report are grouped into 4-stage pipeline:

(i) pre-processing,
(ii) image-based segmentation,
(iii) Feature extraction,
(iv) Classification

MATLAB is used in every process made throughout the project. The program flow concept diagram is can be viewed in Figure 1.

![Figure 1: System Block Architecture](#)
3.1 Pre-processing
Image normalisation is required to correct for variations caused by acquisition and illumination conditions. For this purpose, only the green channel is selected, as it has been shown as the most robust against variations [9]. After that, a low-pass filter [22] is applied to reduce the fine grain noise. Finally, histogram equalisation [22] is applied to ensure consistency across images, Fig. 2(b).

3.2 Automatic segmentation
After the glaucoma specific pre-processing, the ONH structures need to be segmented in order to extract the features. Our automatic segmentation methods aim to segment the disc and the cup. First, retinal vessels are located accurately using the Isotropic Undecimated Wavelet Transform (IUWT) and edge location refinement [10], Fig. 2(c). The resulting image is used as a mask to remove blood vessels and facilitate the segmentation of the different image regions, Fig. 2(d). After that, an iterative and multilevel variation of the Otsu’s adaptive thresholding [23] is applied, which allows us to identify several different image regions [26]. Given the composition of retinal images, four thresholds are applied to segment the first and second brightest regions, corresponding to the cup and the rim respectively, Fig. 2(e). The morphological operator open is applied to filter noise without changing the feature size.

Although the algorithm gives an accurate segmentation, other image regions can be falsely detected as belonging to these ONH primary structures, especially in the presence of other retinal anomalies. In order to filter those false positives, an optical disc detection algorithm is employed. This detector applies a combination of the Circular Hough Transform with a scale invariant kernel operator, as described in [20], to detect circles within the retinal image. The primary goal is not to provide the geometrical parameters of the ONH, since its assumption about circularity may not be well-matched to the real shape of the ONH and may distort the feature values. Instead, the optical disc candidates are used for removing all those segmented areas outside the detected circles, thus filtering those false positives included by the region segmentation. More than one candidate is allowed, since the goal is not to uniquely identify the optical disc center, but to filter wrongly segmented pixels outside the ONH, Fig. 2(b).

3.3 Feature extraction
We hypothesise that geometric features measured from the segmentation of the disc and rim are of greater value than appearance features in detecting glaucoma. To this aim, two features are extracted and used in our framework: Cup-to-disc ratio (CDR): The ratio of the vertical diameters of the inner cup and the outer disc rim is commonly used as an indicator of glaucoma likelihood or disease progression [11]. In our pipeline, the ratio is calculated by localising the highest and the lowest pixel in the vertical axis for both the rim and the cup segmented regions (see Fig. 3).

\[\text{CDR} = \frac{D_{\text{cup}}}{D_{\text{rim}}} \]

(1)

Figure 3: Feature extraction variables
Neuro-retinal rim width variation: The relative width of the neuro-retinal rim at different angular locations is known to differ between normal and glaucomatous discs. Normal subjects have a characteristic distribution, being widest at the inferior part of the disc, followed by decreasing width at the superior, nasal and temporal locations. Glaucomatous eyes typically do not follow such a pattern, which is commonly known as the "ISN'T rule" [12]. In our system, the upper and lower widths of the rim are calculated as the distance between the highest point of the rim and the highest point of the cup and the distance between the lowest point of the rim and the lowest point of the cup respectively, see Fig. 3. Then, the feature is implemented as the difference between these vertical distances.

\[\text{Diff} = \text{dRCup} - \text{dRCdown} \quad \ldots \ldots \quad (2) \]

The above features are the most common features used by ophthalmologists and therefore likely to provide discriminative information for classification.

2.4 Classification Although in the past these features have been used directly for diagnosis by applying a set of rules, mimicking what optometrists do manually, this is subjective, depending on the experience of the expert and the demography of the population. It also assumes that features are perfectly extractable, which is not always true due to segmentation difficulties. On the contrary, by feeding the above feature set into a robust classifier, more complex rules can be automatically inferred and deviations produced by segmentation failures accounted for. Therefore, in our implementation, a SVM classifier with linear kernel is used [24]. This linear classifier determines a maximum-margin and soft hyperplane that best separates the considered classes. Data is normalised and transformed via the method of Glaucoma from Retinal Images

Table 1: Results over the 2 datasets. Four first rows show the state-of-art appearance features, while three middle rows show different variation of our framework and last two rows the combination of our pipeline with appearance features.

<table>
<thead>
<tr>
<th>Method</th>
<th>Dataset 1</th>
<th>Dataset 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>Sens</td>
</tr>
<tr>
<td>Intensity + PCA [8]</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>FFT + PCA [8]</td>
<td>0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>Spline + PCA [8]</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>All appearance [8]</td>
<td>0.55</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Acc</th>
<th>Sens</th>
<th>Spec</th>
<th>Prec</th>
<th>Recl</th>
<th>Fmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR (no circle detect.)</td>
<td>0.79</td>
<td>0.73</td>
<td>0.85</td>
<td>0.85</td>
<td>0.73</td>
<td>0.79</td>
</tr>
<tr>
<td>CDR</td>
<td>0.89</td>
<td>0.93</td>
<td>0.85</td>
<td>0.88</td>
<td>0.93</td>
<td>0.90</td>
</tr>
<tr>
<td>CDR + Diff</td>
<td>0.82</td>
<td>0.87</td>
<td>0.77</td>
<td>0.81</td>
<td>0.87</td>
<td>0.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Acc</th>
<th>Sens</th>
<th>Spec</th>
<th>Prec</th>
<th>Recl</th>
<th>Fmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity + CDR</td>
<td>0.69</td>
<td>0.73</td>
<td>0.64</td>
<td>0.69</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>All Appearance + CDR</td>
<td>0.62</td>
<td>0.60</td>
<td>0.64</td>
<td>0.64</td>
<td>0.60</td>
<td>0.62</td>
</tr>
</tbody>
</table>

IV. EXPERIMENTAL RESULTS

Two different datasets have been used to validate the experiments and ensure that the conclusions are not dependant on the fundus camera. The first dataset was captured with a stereoscopic camera Kowannonmyd WX. Only one of the two images provided was used since our goal is to evaluate monoscopic systems for screening, given their broader availability. The dataset is composed of 29 samples, 14 healthy eyes and 15 glaucomatous ones. The second dataset is a standard set, publicly available [19], which facilitates future comparison of our methodology with others. It contains 26 samples, 8 healthy and 18 glaucomatous discs. Both datasets contain different degrees of glaucoma, from very early stages to severe cases, as well as other disorders, such as hypermetrope, haemorrhages or peripapillary atrophy, that can make diagnosis difficult.
Different variations of our methodology were tested, using only the cup-to-disc ratio, the rim width variation or a combination of both. The circle detector and filter, used to reduce segmentation errors outside the ONH was also evaluated. All the parameters were setup experimentally and kept identical for all experiments and datasets in order to compare the methods in equal conditions and to avoid overfitting to specific cases. In order to validate our method and extract pertinent conclusions regarding the comparison between geometrical and appearance features, different appearance based methodologies - pixel values, fft coefficients B-spline coefficients and a combination of all were implemented following the description, setup and conclusions by Block et al. [9]. All experiments were performed using leave-one-out cross validation.

Results are shown in Table 1 in terms of accuracy (Acc), sensitivity (Sens), specificity (Spec), precision (Prec), recall (Recl) and F measurement (Fmes). It can be seen how our framework provides accurate glaucoma diagnosis. The extraction and usage of geometrical features seems to provide superior diagnosis accuracy under realistic conditions: when the number of training images is small, they perform much better than appearance based. This explains the significant decrease in performance of appearance based feature compared to other results reported in the literature [17, 9], where hundreds of examples were available. Since those features depend heavily on the camera setting, they require retraining for every camera model and therefore they are difficult to deploy in the real world.

Other conclusions can be drawn from these results. The optical disc detection and filtering gives a significant improvement in the final classification. The rim variation feature does not always provide a significant increase in accuracy, especially in the first dataset where the high resolution allows a perfect segmentation of disc and cup, but it plays a significant role for cheaper cameras. The second dataset complexity, with a much lower resolution, is reflected in the final performance of all the tested methods. Finally, by adding geometrical features to the appearance feature vector, results appear to invariably improve, which shows the potential of combining both methodologies with the potential of fully exploiting the advantages of both techniques.

CONCLUSIONS

In this paper, a method for glaucoma diagnosis, based on ONH segmentation of retinal images, is proposed. Our framework is able to accurately extract the cup and the rim of the optical disc to extract high level geometrical features. The obtained values are then used as input to a machine learning classifier, responsible for detecting glaucoma given a new retinal image. Experiments on varied datasets were performed to evaluate our schema with different cameras and resolutions, and both colour and black and white images. The proposed method achieved high accuracy rates overperforming state-of-art methodologies in real conditions, when small training sets are available. The experiments also validated the usage of geometrical features for glaucoma detection and as a complement to appearance based methods. As future work, a diagnosis study will be performed to ensure the validity of our conclusion in a larger scale and the potential of our framework for glaucoma screening and diagnosis in real life.

REFERENCES

Automated Detection of Glaucoma from Retinal Images using Image Processing Techniques

