
International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

10

SOFT COMPUTING TECHNIQUES FOR SOFTWARE FAULT

PREDICTION: COMPARATIVE ANALYSIS

1
GURMEET KAUR,

2
JYOTI PRUTHI,

3
PARUL GANDHI

1Research Scholar CST, MRU Faridabad, India
2Prof. CST, MRU Faridabad, India

3Prof. FCA, MRIIRS Faridabad, India

E-mail: 1grmtkaur02@gmail.com, 2jyoti@mru.edu.in

Abstract - This research paper compares the performance of software fault prediction model developed using Bayesian net,

FIS and ANFIS with specific focus on process level software metrics during software development. The developed models

used for comparison are designed using software metrics as input data to compute the fault density for each basic phase of

SDLC. The comparative study is built on validation of the prediction accuracy for various soft-computing modeling

techniques. Furthermore, the comparative study is performed on the data set from the PROMISE repository, and the

outcomes of various soft computing methodology based models has been compared. The study shows that ANFIS based

model for software fault prediction provides better accuracy as calculated from statistical analysis, MMRE (0.016461) and

RMSE (0.0375) in contrast to other soft computing techniques based on a model on Bayesian net and FIS.

Keywords - Software development life cycle (SDLC), Software Fault Prediction (SFP), Soft Computing, Fuzzy Inference

System (FIS), Neuro-Fuzzy System (NFS), Adaptive Neuro-Fuzzy Inference System (ANFIS), Software Fault, Artifical

Neural Network (ANN).

I. INTRODUCTION

Faults in software systems are a serious problem. The

Software Quality Assurance and Software Reliability

is the core to guarantee the superior quality of

software. Both these concepts are attracted all

throughout the development of the software and

measure. A software bug is a defect, error, failure, or

flaw during the execution of a software program that

permits it from acting as expected function (e.g.,

delivering an erroneous outcome). The software

defect may be a defect that gives rise to failure of

software functionally. The software failure alludes to

the uncertain outcomes made because of various state

and surroundings factors which make defaults during

the execution of a utility program. A software fault

prediction offers the benefits regarding time

complexity, low cost budget, testing effort, and

increases the reliability along with the quality of the

software if it is applied at the starting phase of

traditional and agile based software development life

cycle.

Defective software modules cause software failures,

reduce customer satisfaction, increased development,

and maintenance costs. The objective of the

development of software fault prediction models is

making use of course of actions which will be

acquired generally right on time for the life cycle of

project development to give adequate initial

assessments of the standard of developing a software

project.

With the fast progression of the software business,

the use of the agile development technique proposed

in recent years stress on timely reacting to the

changes in prerequisites as describing the

insufficiency of the conventional programming

development process. As the requirements of

programming change frequently, the estimations

should have the opportunity to be firmly checked.

Changing requirements are one among the principle

issues that emerge within the development process of

software. Agile-based software process effectively

deals with the truth of variation. Many of the existing

faults prediction algorithms focus on expecting the

number of faults in the modules of software using the

product metrics. As there are many well-established

programming measurements available for the TSD

like Cyclomatic Complexity Metric (CCM), Halstead

Complexity Metric (HCM), Lines of Codes (LOC),

and defect density estimates the defect per function

point or defect per KLOC, but a few are regularly

implemented to the ASD process. Agile based

process incorporates changes all through the

technique because of the iterative and gradual

development process. There are a couple of

difficulties in estimating the presentation of the agile-

based development group.

There are various kinds of soft computing techniques

like Bayesian net, Fuzzy Logic System, machine

learning, Neuro Fuzzy System, Artifical Neural

Network, and Adaptive Neuro Fuzzy Inference

System employed for Software Fault Prediction. In

recent years, various researchers try to automate the

fault prediction process by designing computer-based

models that can perform learning from existing

prediction data. The central focus of this research

manuscript is the implementation of soft computing

techniques and approaches like Fuzzy Logic System,

and Adaptive Neuro Fuzzy Inference System on

which the model is design by selecting software

metrics as inputs for a dataset and comparing in what

way the performance (in term of MMRE, BMMRE)

of the different models affects the context. The aim of

this research paper is the comparison of the

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

11

performance of different soft computing modeling

like (Bayesain net, Fuzzy Logic System, and

Adaptive Neuro Fuzzy Inference System) for SFP

framework.

II. RELATED STUDY

As the growing number of faults affects development

time, cost and quality of a software package, so

software fault prediction is the way of detecting

faulty components in modules before the

implementation of the software. This comparative

study is predicated to provide a comprehensive

picture in the area of software fault prediction

administered by many researchers using various soft

computing techniques. The study includes

comparative analysis of soft computing techniques

based models developed by Fenton [10], Panday and

Goyal [11], Yadav [12], and Sharma [13] for software

fault prediction.

Chatterjee, S., Maji, B (2018) [1] planned a model to

arrive at a object assessment of weaknesses during

initial development of programming lifecycle and to

anticipate the total number of faults. The author

applied Interval type-2 fuzzy reasoning for getting the

unexpected probability esteems inside the node

probability tables of the assumption network.

The proposed Bayesian construction makes use of the

programming faculty to understand the predefined

information about programming estimations at the

initial stage for achieving focused on various

deficiencies. The benefit of the suggested model are

that it can oversee the product engineers for

accomplishing a focused on condition of the whole

number of programming defects and anticipate the

complete number of faults.

Bilgaiyan, S., Mishra, S. and Das, M (2019) [2]

performed near-investigation of anticipated for

different kinds of ANNs and spotlighted on two kinds

of neural network as ANN based on feed forward

back-propagation network and Elman neural network.

The proposed work uses three particular execution

estimations to measure the performance of the model

for example, mean square error (MSE), mean size of

relative error (MMRE), and assumption (PRED (X))

to appear at. The feed forward back-propagation

neural network has high algorithm speed, fixed

algorithm time and adaptation to non-critical failure

concerning Elman organization.

Kapil Juneja (2019) [3] proposed a system using inter

version and inter project assessment to recognize the

product defect. During the working of the framework,

the past assignments or adventure variations are taken

for preparing sets, and thus, the present version or

exercises are taken as testing sets. The author

performed investigation taken from PROMISE store,

even as on PDE and JDT adventures and other more

nine open source adventures. The cooperation on

these two parameters is applied by making use of the

symbolic or fuzzy logic to recognize the successful

task measurements. The assessment results showed

that the suggested system showed outstandingly good

outcomes for Eclipse-PDE and Eclipse-JDT based

projects.

The SFP model affects in various areas of software

development which in turn offer benefits in terms of

quality, reliability, time and cost of completion.

III. SOFT-COMPUTING TECHNIQUES

A. Byesian Net

The Bayesian net is useful for handling missing data,

for uncertain input/output variables. The Bayesian net

is composed of mainly two components, and these are

a directed acyclic graph and a probability distribution.

The Bayesian net works on the basis of a directed

acyclic graph where nodes are variables and links

between nodes show the relationships between

variables. It provides an easier way to understand the

relationship between variables using a graph. The

values of output variables computed using probability

distribution conditionally or unconditionally for the

node/variables.

Bayesian net relates to the field of probabilistic

graphical model and is also popular as a belief

networks. A Bayesian network over Z= {z1,

z2, zn} set of random variables from a finite

domain is a pair Y=(B, θB) that presents a joint

probability distribution of Zi.

Where B is a directed acyclic graph in which nodes

corresponds to a random variable z1, z2, zn and

edge of the graph represent the relationship between

the variables.

And θB represents parameter for each value zi of Z.

Y represents unique joint probability distribution over

Z given by:

Пzi Py (z1, z2, zn) = Py(𝑛
𝑖=1 Zi/ Пzi) (1)

Fig. 1 Sample of Bayesian network

Consider the sample network in figure 1. Here the

node A, B, and S represents the events “Fuel”,

“Battery life”, and “Vehicle move” respectively. It is

assumed that all the variables have binary value

represented in the table as shown in the figure. Using

joint probability distribution for S will require four

parameters. It can be noticed from table that when

A=1, B=1 then probability of S is 99.5 i.e. “Vehicle

will move”.

B. Fuzzy logic

Fuzzy logic launched in 1965 by Prof. Zadeh. It is

basically derived from the fuzzy set theory. It is a

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

12

methodology for solving problems which are difficult

to understand quantitatively. Figure 2 presents the

fuzzy methodology.

A fuzzy set is derived from a crisp set. A fuzzy set

permits partial membership whereas a crisp set

permits either no membership or full membership

absolutely. A characteristic function is to use to

describe the membership or non-membership of item

z in a crisp set Y, where in a fuzzy set this concept is

illustrated by using partial membership. The degree

or grade of membership of a fuzzy set is classified by

a membership function which belongs to every

element in the fuzzy set a real value from the closed

interval [0, 1].

Fig. 2 Fuzzy methodology

The value of a fuzzy number is imprecise, not exact

like single numbers. The domain of fuzzy number is

defined, normally the set of real numbers, and the

range is the real positive numbers from the closed

interval [0, 1]. Fuzzy logic is designed when fuzzy

sets are used with the logical expression.

1). Fuzzification

Here every linguistic variable can be a triangular

Fuzzy numbers, TFN (a, m, b), a≤m, b≥ m. The

membership function (µ(x)) for TFN is explained

below:

µ(x) =

0, 𝑋 ≤ a
𝑋−a

m−a
, a ≤ X ≤ m

b−X

b−m
, m ≤ X, ≤ b

 (2)

To describe the fuzziness of input metrics, a

membership function is used. Membership function

can be developed either using real data or with the

help of an expert of a particular domain. As the

performance of a method turns on the membership

functions applied, so the designing of the membership

function is very crucial. Thus, it is required to

describe how the membership functions are acquired.

There are various methods like: rank ordering,

intuitive, inference, neural networks, angular fuzzy

sets, genetic algorithm for allocating membership

values to fuzzy variables. But there are no classic

rules or guidelines that can be applied for the proper

membership function generated method. The intuitive

method assigned membership value on the basis of

the human intelligence and their level of knowledge.

The various types of membership function are

triangular, trapezoidal, parabolic etc. The figure 3

shows the representation of TFN (a, m, b).

2). Fuzzy Rule

There are various sources such as analyzing historical

data, experts of particular domain, and knowledge

base from literature to formulate the fuzzy rule base

[4] [5]. Here, fuzzy rule is explained using a

conditional statement as IF-THEN. IF portion of the

rule is known as a predecessor and THEN portion is a

successor [6].

Fig. 3 Graphical presentation of triangular membership

function

3). Fuzzy Reasoning and Defuzzification

Fuzzy reasoning system analyzes computes and

collects the outputs of each fuzzy rule. FIS use

various defuzzification methods to draw fuzzy set

into a crisp number like, max-min centroid and

bisection. The figure 4 shows the defuzzification

method.

Fig. 4 Defuzzification method

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

13

The centroid method is general and physically

attractive among all the defuzzification methods. It is

also known as center of gravity/area [7].

C. ANFIS

Fuzzy Systems requires human expertise knowledge

to design a rule base and implement fuzzy inference

system to deduce the complete or final output. The

earlier knowledge about the system is very important

for designing of membership functions and

corresponding if-then rules. But, there is no organized

method to convert knowledge and experiences of

humans into the knowledge base of a fuzzy inference

system. Also to achieve results with the low fault rate,

there is a requirement for modification of training

algorithms. But, ANN training methods do not

depend on human knowledge and experience. Also

because of the uniform design of ANN, it is not

possible to obtain organized knowledge from the

arrangement of the ANN.

ANN is a Black box and uses training for scratch

while FIS is Interpretable and employs heuristics and

linguistic knowledge. The characteristics of artificial

neural network (ANN) and fuzzy inference system

(FIS) are interrelated which promote the aspect of the

Neuro-Fuzzy System (NFS) that include benefits of

the capability of the fuzzy inference system to

preserve human knowledge & experience and the

capability of training of the ANN. The Adaptive

Neuro-Fuzzy Inference System (ANFIS) is

architecture which provides a general way to employ

a training method to a Fuzzy Inference System (FIS)

to present it in a particular architecture, like artificial

neural networks (ANN). The robustness and fastest

convergence is the key to success of ANFIS. The

ANFIS architecture [8] is illustrated in figure 5.

Fig. 5 ANFIS architecture with the two inputs and two rules

A general first order Sugeno fuzzy model for adaptive

network is described using IF-THEN rule with two

fuzzy inputs as follow:

First rule

If (x = A1) and (y = B1)

then

f1=p1x+q1y+r1

Second rule

If (x = A2) and (y = B2)

then

f2=p2x+q2y+r2

The result can be explained using z from Figure 5 as:

z =
𝑤1

𝑤1+𝑤2
𝑓1 +

𝑤2

𝑤1+𝑤2
𝑓2

(3)

The adaptive neural network of a first order Sugeno

fuzzy model is functionally equivalent to equation (3).

It described that the ANFIS model presented in figure

5 be framed as a linear equation of the subsequent

boundary (layer 4), when the estimates of the premise

boundary (layer 1) are set.

Generating Initial FIS

The problem with fuzzy inference system is

identification of rules. Rules are generated either by

using grid partitioning or subtractive clustering

methods in ANFIS.

The algorithms for learning/training of ANFIS are

classified as two types:

Backward Pass: It works in the backward direction,

using gradient descent method, and generates output

errors in the backward direction.

Hybrid learning algorithm: It works in the forward

direction, applies the least squares method to

recognize subsequent parameters, and generates

output errors in forward until the last layer.

IV. RESULT AND DISCUSSION

In order to compare the performances of the software

fault model using soft computing methodology, a data

sets of twenty plus real software projects are selected

from PROMISE repository for case studies [9] and

reconstruct in Appendix Table 1 where the selected

software metrics are stated with qualitative value of

as Very Low (VL), Low (L), Medium (M), High (H)

and Very High (VH) and Table II represents the data

set with centroid values.

This research paper described that Fenton [10],

Pandey and Goyal [11], Yadav [12], and P. Sharma

and A.L. Sangal [13] used dataset [9] in their

software fault prediction model to predict faults using

soft computing modeling techniques respectively.

Fenton [10] developed a model which based on

Bayesian net to estimate the software defect for

dataset from PROMISE repository [9]. The author

designed model using seven requirements metrics,

seven design and development metrics, and four

testing phase metrics as input for prediction of faults.

He also considered five linguistic levels very high,

high, moderate, low, and very low for all input/output

variables. The model works on the basis of directed

acyclic graph where nodes are variables and links

between nodes shows the relationships between

variables. The values of output variables computed

using probability distribution conditionally or

unconditionally for the node/variables.

Pandey and Goyal [11] designed model using three

metrics at requirements analysis phase, two metrics at

design, two metrics at coding, and three metrics at

testing phase as input. The results of the model are

obtained at the end of each phase of SDLC as

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

14

indicator of fault density. The author designed a

model using fuzzy logic and applied Matlab for

implementation. The basic steps for the

implementation of model included the recognition of

process-level software metrics, designing of fuzzy

rules to define links across inputs and output

variables, and prediction of the fault by using fuzzy

inference system (FIS).

As input/output variables are fuzzy number and

author selected triangular fuzzy numbers (TFN) as

type of the membership function of input/output

variables. Also TFN are easy to work with real

numbers.

The author has considered five linguistic level very

high, high, moderate, low, and very low for all input

variables and selected seven level very very High,

very high, high, moderate, low, very low, and very

very low for all output variables.

The author collected knowledge from various sources

like literature, existing data, and domain experts to

frame the fuzzy rules [14] [15]. The author designed

rules on the basis of software engineering and project

management concepts.

The designed fuzzy inference system performs

mapping for the list of fuzzy rules for each inputs on

to an output. Each rule describes the functionality of

the mapping [16] [17]. The author considered

Mamdani fuzzy inference system for the processing

of dataset [18]. The defuzzification required to get a

crisp number from a fuzzy set. The author considered

centroid method for defuzzification because it returns

the centre of gravity/area under curve [18].

Yadav [12] presented a software defect prediction

model using fuzzy logic for the reliability metric as

input for four basic phases of software development.

The author used nine software metrics for four phases

are requirement analysis, designing, coding, and

testing to predict fault density. The input/output

variables are fuzzy number and the author selected

trapzodial fuzzy numbers as type of the membership

function of input variables and triangular fuzzy

numbers as type of the membership function of

output variables. The author has considered three

linguistic level high, moderate, and low for all input

variables and selected five level very high, high,

moderate, low, and very low for output variables.

The author designed the fuzzy rules on the basis of

domain knowledge, related study, and software

engineering concepts. The author used fuzzy

inference tool of Matlab for implementation of model

for each phase of software development and obtained

results as defect density value for each phase.

P. Sharma and A.L. Sangal [13] presented a model

design using the fuzzy linguistic system to calculate

the defect density for different process metrics. The

author presented framework using 21 process metrics

for four phases are requirement analysis, designing,

coding, and testing to predict fault density. The

author selected triangular fuzzy numbers (TFN) as

type of the membership function for input/output

variables and considered five linguistic level very

high, high, moderate, low, and very low for

input/output variables.

At first, the author fuzzified process metrics with the

use of membership functions defined with lingual

data. After this, FIS was designed to compute the

faults. Also, the author applied the back propagation

algorithm to train the fuzzy set of rules so that the

accuracy of prediction of the designed fuzzy

inference system can be improved. The author

repeated the training of model for each phase of

software development at 100 epoch to get minimum

error rate. Finally, to get crisp value from aggregated

fuzzy set, the author used centroid method for

defuzzification for each phase of software

development.

The comparison of result for Software fault

prediction based on various soft computing

methodologies is described in table I. The prediction

results of SFP model depend on and vary according

to dependent variables. To measure the level of

accuracy of the SFP model, there are various

analytical methods available that can be apply to

compare the performance of the designed SFP model.

These methods can be either Continuous or

Categorical studies. The Continuous studies related to

difference between actual and predicted outcomes,

goodness-of-fit, classified and appropriate outcomes,

and accuracy. These measurements focused on

predicting the number of defects.

To compare the accuracy of software fault prediction

models using various soft computing modeling

different analytical measures used are MMRE,

BMMRE, RMSE, and NRMSE and computed

measures for worst case.

Case

study #
Project # Size in KLOC

Actual

Defect

Fenton

(Bayesian

Net) [10]

Pandey

(FIS) [11]

Yadav

(FIS) [12]

Sharma

ANFIS

[13]

1 1 6.02 148 75 56 155 156

2 2 0.9 31 52 5 30 37

3 3 53.86 209 254 210 205 191

4 5 14 373 349 232 ---- 362

5 7 21 204 262 113 209 185

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

15

6 8 5.79 53 48 53 53 52

7 10 4.84 29 203 26 31 36

8 11 4.37 71 51 40 84 80

9 12 19 90 347 176 97 85

10 13 49.1 129 516 336 142 131

11 14 58.3 672 674 697 ---- 620

12 15 154 1,768 1526 1650 1740 1730

13 16 26.67 109 145 127 101 102

14 17 33 688 444 135 733 690

15 19 87 476 581 573 446 422

16 20 50 928 986 869 955 935

17 21 22 196 259 105 192 174

18 22 44 184 501 291 194 156

19 23 61 680 722 690 ----- 686

20 27 52 412 430 400 ---- 380

21 29 11 91 116 110 91 78

22 30 1 5 46 6 5 7

TABLE I

COMPARISON OF RESULT FOR SOFTWARE FAULT PREDICTION BASED ON VARIOUS SOFT COMPUTING

METHODOLOGIES

Magnitude of Relative Error (MRE): The most

frequently applied accuracy metrics are the

magnitude of relative error. It can be computed on the

basis of either the mean or the median. The MRE is

always less than 1[13].

MRE =
(Actual de fect − Predicted defect)

Actual defect

(4)

Mean MRE (MMRE): It is the average of magnitude

of relative error values over N projects. The problem

of the Mean MRE is its sensitivity to anomaly.

Median MRE (MdMRE): It is the median of MRE

values over N projects. It is less sensitive to anomaly.

Balanced MMRE (BMMRE): As MMRE is

unbalanced, so for this reason BMMRE is used as

[13][19]:

BMMRE =
1

𝑛

| Actual defect − Predicted defect |

min (Actual defect ,Predicted defect)

𝑛
𝑖=1

(5)

Root Mean Square Error (RMSE): It is calculated as

the difference between actual and predicted values

over N projects. The low value of RMSE gives the

better result [13].

RMSE

= 1/𝑛 Actual defect − predicted defect 𝑛
𝑖=1

2

(6)

Normalized Root Mean Square Error (NRMSE): It is

the same as the RMSE. It is computed by dividing

RMSE to the range of actual value [13].

NRMSE =
RMSE

Max Actual Defect −Min (Actual Defect)

(7)

Fenton

(Bayesian Net) [10]

Pandey

(FIS) [11]

Yadav

(FIS) [12]

Sharma

(ANFIS) [13]

MMRE 0.7948 0.2523 0.02171 0.01646

BMMRE 0.7998 0.6055 0.0229 0.016861

NRMSE 3.454 0.627 0.0426 0.0327

RMSE 324.7 350.49 55.161 48.524

TABLE II

PERFORMANCE MEASURE

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

16

It shown from Table II and Figure 6 (a, b) that the Sharma [13]’s ANFIS based model shows better prediction

accuracy for fault predictions in comparison of model by Fenton [10], Pandey and Goyal [11], and Yadav [12]

model.

Fig. 6(a) Performance of various software fault prediction

models based on soft computing approaches

Fig. 6(b) Performance of various software fault prediction

models based on soft computing approaches

V. CONCLUSION

This research paper compares the performance of

fault prediction model designed based on soft

computing approaches such as Bayesian net, FIS and

ANFIS during software development by employing

metrics from PROMISE data set.

Fenton [10] described software fault prediction model

using Bayesian net technique.

Pandey and Goyal [11] predicted fault contents in a

software product by applying a FIS based model

which takes into account the process metrics. The

author considered Mamdani fuzzy inference system

for the processing of dataset and considered the

centroid method to derive a crisp number from a

fuzzy set, for defuzzification using MatLab tool.

Yadav [12] used fuzzy inference tool of Matlab for

implementation of model for each phase of software

development and obtained results as defect density

value for each phase using nine software metrics.

P. Sharma and A.L. Sangal [13] fuzzified 21 process

metrics with the use of membership functions defined

with lingual data. After this, FIS was designed to

compute the number of faults. Also, the author

applied the back propagation algorithm to train the

fuzzy set of rules so that the accuracy of prediction of

the designed fuzzy inference system can be improved.

To compare the validation of Pandey and Goyal [11],

Yadav [12], P. Sharma and A.L. Sangal [13] model,

data set from PROMISE repository related to twenty-

plus projects has been used. Different analytical

standard such as MMRE, BMMRE, RMSE, and

NRMSE have been used for measuring the

performance. It is remarked from the performance

measures that P. Sharma and A.L. Sangal [13] ANFIS

based model presents better fault prediction capability

in contrast with the Fenton [10] Bayesain net based

model, Pandey and Goyal [11], Yadav[12] FIS based

model.

REFERENCE

[1] Chatterjee, S., Maji, B., “A bayesian belief network based

model for predicting software faults in early phase of

software development process”, Appl. Intell., vol. 48 pp

2214–2228, 2018. https://doi.org/10.1007/s10489-017-1078-

x

[2] Bilgaiyan, S., Mishra, S. & Das, M., “Effort estimation in

agile software development using experimental validation of

neural network models”, Int. j. inf. tecnol., vol.11 pp 569–

573, 2019. https://doi.org/10.1007/s41870-018-0131-2

[3] Kapil Juneja, “A fuzzy-filtered neuro-fuzzy framework for

software fault prediction for inter-version and inter-project

evaluation”, Elsevier Applied Soft Computing ,vol. 77 pp

696-713, 2019 https://doi.org/10.1016/j.asoc.2019.02.008

[4] L. A. Zadeh, Knowledge representation in fuzzy logic, IEEE

Transactions on Knowledge and Data Engineering, vol. 1

no.1 pp. 89–100, 1989.

[5] X. Zhang, H. Pham, An analysis of factors affecting

software reliability, Journal of Systems and Software, vol.

50 no. 1 pp. 43–56, 2000.

[6] M. Li, C. Smidts, A ranking of software engineering

measures based on expert opinion, IEEE Transaction on

Software Engineering, vol. 29 no. 9 pp. 811–824, 2003.

[7] T. J. Ross, Fuzzy logic with engineering applications, John

Wiley & Sons publications, 2nd Edition, 2009.

[8] Jang J S. R.,C.T. Sun, E. Mizutani, (1997) “Neuro Fuzzy

and Soft Computing A Computation Approach to Learning

and Machine Intelligence”, Matlab Curriculum Series,

Prentice Hall.

[9] http://tunedit.org/repo/PROMISE/DefectPrediction/qqdefect

s_numeric.arf

[10] Fenton, N. Neil, N. Marsh, W. Hearty, P. Radlinski, L.

Krause, P., “On the efectiveness of early life cycle defect

prediction with Bayesian nets”, Empirical Softw. Eng., vol.

13 pp 499–537, 2008.

[11] A. K. Pandey, N. K. Goyal, “Multistage model for residual

fault prediction”, In Early Software Reliability Prediction,

Springer India, pp. 59–80, 2013.

[12] Yadav H.B., Yadav D.K., “A fuzzy logic based approach for

phase-wise software defects prediction using software

metrics” Inf. Softw. Technol, vol. 63 pp 44–57, 2015.

https://doi.org/10.1016/j. infsof.2015.03.001

[13] Sharma P., Sangal A.L., “Building and Testing a Fuzzy

Linguistic Assessment Framework for Defect Prediction in

ASD Environment Using Process-Based Software Metrics”,

Arabian Journal of Science and Engineering, vol. 45

no.12 pp.10327–10351,

2020. https://doi.org/10.1007/s13369-020-04701-5.

[14] Xie, M., Hong, G.Y., and Wohlin, C., “Software reliability

prediction incorporating information from a similar project”,

The Journal of Systems and Software, vol. 49 pp 43-48,

1999.

[15] Zhang, X., and Pham, H., “An Analysis of Factors Affecting

Software Reliability”, The Journal of Systems and Software,

vol. 50(1) pp 43-56, 2000.

[16] Bowles, J.B., and Pelaez, C.E., “Application of fuzzy logic

to reliability engineering”, IEEE Proceedings, vol. 83 no. 3

pp. 435-449, 1995 .

[17] Zadeh, L.A., “Knowledge representation in fuzzy logic”,

IEEE Transactions on Knowledge and Data Engineering,

vol.1 pp 89-100, 1989.

https://doi.org/10.1007/s10489-017-1078-x
https://doi.org/10.1007/s10489-017-1078-x
https://doi.org/10.1007/s41870-018-0131-2
https://doi.org/10.1016/j.asoc.2019.02.008
https://doi.org/10.1007/s13369-020-04701-5
https://doi.org/10.1007/s13369-020-04701-5
https://doi.org/10.1007/s13369-020-04701-5

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-10, Issue-2, Feb.-2022, http://iraj.in

Soft Computing Techniques for Software Fault Prediction: Comparative Analysis

17

[18] Mamdani, E.H., “Applications of fuzzy logic to approximate

reasoning using linguistic synthesis”, IEEE Transactions on

Computers, vol. 26(12) pp 1182-1191, 1977.

[19] T. Sethi, , "Improved approach for software defect

prediction using artificial neural networks", Proceedings of

the 5th International Conference on in Reliability, Infocom

Technologies and Optimization (Trends and Future

Directions) (ICRITO), pp. 480-485, 2016.

APPENDIX

TABLE I

DATA SET WITH LINGUISTICVALUE

TABLE II

DATA SET WITH CENTRIOD VALUE

